These glaciers may team up and cause faster melting

Thwaites Glacier in Antarctica, pictured here, may be at risk of melting farther inland than previously thought. (Credit: NASA)

A large and potentially unstable Antarctic glacier may be melting farther inland than previously thought, according to new research.

This melting could affect the stability of another large glacier nearby—an important finding for understanding and projecting ice sheet contributions to sea-level rise.

The findings come from radar data collected at the same locations in 2004, 2012, and 2014, each revealing details of the glaciers miles below the surface. The surveys show that ocean water is reaching beneath the edge of the Pine Island Glacier about 7.5 miles further inland than indicated by previous observations from space.

The team also found that the Southwest Tributary of Pine Island Glacier, a deep ice channel between the two glaciers, could trigger or accelerate ice loss in Thwaites Glacier if the observed melting of Pine Island Glacier by warm ocean water continues down the ice channel.

“This is a potentially really dynamic place between these two glaciers, and this is somewhere where further study is really warranted,” says lead author Dustin Schroeder, an assistant professor of geophysics at the School of Earth, Energy & Environmental Sciences at Stanford University. “If this tributary were to retreat and get melted by warm ocean water, it could cause the melt beneath Pine Island to spread to Thwaites.”

Sea-level rise has become a major global concern based on research showing extra ocean water from melting glaciers could swamp coastal areas around the world, contaminate drinking and irrigation water, threaten wildlife populations, and hurt the economy. This new perspective on the Southwest Tributary shows melting beneath Pine Island may be currently or imminently causing the melting of Thwaites and speeding the rate of sea-level rise.

“These results show that the ocean is really starting to work on the edge of this glacier, which means that we’re likely at the onset of it having an impact,” Schroeder says.

The Thwaites and Pine Island glaciers in the Amundsen Sea Embayment are known as outlet glaciers, or channels of ice that flow out of an ice sheet. In recent years, they have become the focus of large international research efforts to better understand their potential impacts on sea-level rise. But measurements of the same areas over time are rare due to the high cost of building and operating airborne radars that collect information underneath ice.

Melting glacier leads to first modern ‘river piracy’

Looking at these two glaciers as a system involved a time-consuming process of building algorithms that interpret airborne data gathered from planes flying at different heights with unique radar systems, Schroeder says. Researchers analyzed 2004 data from a University of Texas survey using the UTIG HiCARS radar system and 2012 and 2014 data from University of Kansas surveys using the CReSIS MCoRDS radar system.

“Our group is a combination of glaciologists and radar engineers, so we’re particularly suited to the challenge of taking these very different radar systems and trying to figure out what you can see between them,” says Schroeder, who is also a faculty affiliate with the Stanford Woods Institute for the Environment.

The process has shifted Schroeder’s outlook on how to approach collecting data about glaciers.

“Even as we map and fill in the coverage, we should have in our portfolio of observations repeat coverage, as well, which is something that as a radar-sounding community we really haven’t traditionally prioritized,” Schroeder says.

Glaciers may have kept Earth from freezing

The findings appear in the Annals of Glaciology. Additional coauthors are from the University of Kansas, the University of Texas, and the Natural Environment Research Council’s British Antarctic Survey.

The research was partially supported by a grant from the NASA Cryospheric Sciences Program.

Source: Stanford University