Play Video

Blood pressure app rivals arm cuff’s accuracy

A new app measures blood pressure with accuracy that may rival arm cuff devices.

The new technology, detailed in a paper in the journal Science Translational Medicine, also includes discovery of a more convenient measurement point.

“We targeted a different artery, the transverse palmer arch artery at the fingertip, to give us better control of the measurement,” says lead author Anand Chandrasekhar, electrical and computer engineering doctoral student at Michigan State University. “We were excited when we validated this location. Being able to use your fingertip makes our approach much easier and more accessible.”

The approach uses two sensors: an optical sensor on top of a force sensor. The sensor unit and other circuitry are housed in a 1 centimeter-thick case attached to the back of the phone. Users turn on the app and press their fingertip against the sensor unit. With their finger on the unit, they hold their phone at heart level and watch their smartphone screen to make sure they’re applying the correct amount of finger pressure.

“A key point was to see if users could properly apply the finger pressure over time, which lasts as long as an arm cuff measurement,” says senior author Ramakrishna Mukkamala, electrical and computer engineering professor. “We were pleased to see that 90 percent of the people trying it were able to do it easily after just one or two practice tries.”

Enormous blood pressure study yields surprises

Internationally, thes device could be a game-changer, researchers say. While high blood pressure is treatable with lifestyle changes and medication, only around 20 percent of people with hypertension have their condition under control.

The new invention gives patients a convenient option, and keeping a log of daily measurements would produce an accurate average, discounting an occasional measurement anomaly, Mukkamala says.

The research team will continue to improve accuracy and hopes to pursue more comprehensive testing based on the standard protocol of the Association for the Advancement of Medical Instrumentation. The scientists are already making inroads to build improved hardware. Future iterations could be as thin as 1 millimeter and be part of a standard protective phone case.

Other researchers from Michigan State and from the University of Maryland contributed to the work. The National Institutes of Health and MSU supported the study.

Source: Michigan State University