View more articles about

(Credit: Getty Images)

learning

Deepest sleep may be vital for visual learning

Certain visual learning takes hold in the brain during sleep, new research suggests.

Remember those “Magic Eye” posters from the 1990s? You let your eyes relax, and out of the tessellating structures, a 3D image of a dolphin or a yin yang or a shark would emerge.

Getting good at seeing those 3D images is an example of visual perceptual learning. Researchers working with mice have found this learning is cemented in the brain during the deepest part of sleep, called slow-wave sleep.

magic eye test
“Magic Eye” image generated from text. (Credit: U. Michigan)

When we see something, our retinas transmit that image to the thalamus in the brain, where neurons send very basic visual information to the visual cortex to be processed, says study author Sara Aton, assistant professor of molecular, cellular, and developmental biology at University of Michigan.

When the brain is awake, neurons in the thalamus and cortex fire steadily to transmit visual information between them. However, in slow-wave sleep, those neurons will burst and then pause rhythmically and in synchrony, Aton says.

There is also communication in the opposite direction—between the visual cortex and thalamus—forming a loop of communication between the two structures.

Prior work in the Aton lab had shown that after presenting mice with a new type of visual experience and then allowing those mice to sleep, neurons in the cortex fired more when seeing that stimuli again. But the lab also showed the brain needs sleep in order to make cortical changes. If mice were sleep deprived after the experience, no changes in the cortex occurred.

Disrupted rhythm

“We wondered what would happen if we just disrupted that pattern of activity without waking up these animals at all?” Aton says. “The big finding in our study is that if you disrupt communication from the cortex to the thalamus during slow-wave sleep, it will completely disrupt that slow-wave rhythm and the plasticity in the visual cortex.”

The researchers turned off neurons in the visual cortex that complete the “loop,” sending information back to the thalamus, while the mice were naturally asleep or awake. While this did not wake the sleeping mice, it did keep them from having coordinated rhythms of activity between the two structures during slow-wave sleep.

Aton says if cortex-to-thalamus communication is disrupted in any other behavioral state such as wakefulness or REM, there’s no effect on sleep-dependent plasticity of the visual cortex.

Brain rhythm may explain why sleepy brains forget

“But if you disrupt these oscillatory patterns during slow-wave sleep, you see a deficit,” Aton says. “What we’re thinking is you need these big waves of activity occurring in order to have that benefit of sleep.”

Why these waves matter

What is the significance of the waves? Lead author Jaclyn Durkin, a doctoral student in Aton’s lab, made recordings in both a part of the thalamus called the lateral geniculate nucleus, which processes visual information, and the visual cortex of mice. She tracked the activity of these populations of neurons while presenting the mice with patterns of visual stimulation. She did this across many hours of subsequent sleep.

“In these mice, during visual experience, we saw immediate changes in the neurons in the thalamus, but nothing going on in the visual cortex,” Aton says. “These waves during subsequent sleep are apparently able to transfer information from the thalamus to the cortex, and that information reflects what that animal has just been looking at.”

Next, the researchers plan to test what types of information can be relayed in this way, and determine exactly how information is relayed to cortex by thalamic neurons. They also hope to test how sleep-dependent plasticity in the visual cortex affects visual perception and visual memory in their mice.

Does a lack of REM sleep ‘erase’ memories?

The researchers report their work in the journal Proceedings of the National Academy of Sciences.

Source: University of Michigan

Related Articles