digestion ,

Worms’ gut bugs go from friend to foe

MICHIGAN STATE (US) — Seemingly benign bacteria live in worms’ guts and contribute to their survival. With a flip of a switch, however, the same bacteria transform from harmless to deadly.

In the current issue of Science, Michigan State University researchers report how a bacteria flips a DNA switch to go from an upstanding community member in the gut microbiome to deadly killer in insect blood.


Todd Ciche, assistant professor of microbiology and molecular genetics, has seen variants like this emerge sometimes by chance resulting in drastically different properties, such as being lethal to the host or existing in a state of mutual harmony.

Even though human guts are more complex and these interactions are harder to detect, the revelation certainly offers new insight that could lead to medical breakthroughs, he says.

“Animal guts are similar to ours, in that they are both teeming with microbes,” says Ciche, who worked with researchers from Harvard Medical School. “These bacteria and other microorganisms are different inside their hosts than isolated in a lab, and we’re only beginning to learn how these alliances with microbes are established, how they function and how they evolve.”

The bacteria in question are bioluminescent insect pathogens called Photorhabdus luminescens. In their mutualistic state, they reside in the intestines of worms, growing slowly and performing other functions that aid nematode’s survival, even contributing to reproduction.

As the nematodes grow, the bacteria reveal their dark side. They flip a DNA switch and arm themselves by growing rapidly and producing deadly toxins. When the worms begin infesting insects, they release their bacterial insecticide.

“It’s like fleas teaming up with the plague,” Ciche says.

The question remains: What causes this dramatic transformation?

“If we can figure out why the DNA turns on and off to cause the switch between Jekyll and Hyde, we can better understand how bacteria enter stages of dormancy and antibiotic tolerance—processes critical to treating chronic infections,” Ciche says.

Part of Ciche’s research is funded by Michigan State’s AgBioResearch. Additional researchers contributed to the study from Michigan State and University of California-San Diego, Harvard Medical School, and Yale University.

More news from Michigan State University: http://news.msu.edu/

Related Articles