Stored CO2 may be earthquake trigger

STANFORD (US) — Storing massive amounts of carbon dioxide underground in an effort to combat global warming could potentially cause small to moderate earthquakes.

While those earthquakes are unlikely to be big enough to hurt people or property, they could still cause serious problems for the reservoirs containing the gas, according to new research.

“It is not the shaking an earthquake causes at the surface that creates the hazard in this instance, it is what it does at depth,” says Mark Zoback, professor of geophysics at Stanford University.

“It may not take a very big earthquake to damage the seal of an underground reservoir that has been pumped full of carbon dioxide.”

Carbon dioxide, a major cause of a global warming, is produced by coal-burning power plants and refineries in several countries, including the U.S., China, and India. Keeping some of that carbon dioxide from entering the atmosphere by storing it underground could reduce the amount of warming.

The other complication is that for sequestration to make a significant contribution to reducing carbon dioxide emissions, the volume of gas injected into reservoirs annually would have to be almost the same as the amount of fluid now being produced by the oil and gas industry each year, likely requiring thousands of injection sites around the world.

“Think about how many wells and pipelines and how much infrastructure has been developed to exploit oil and gas resources over the last hundred years,” Zoback says. “You need something of comparable scale and volume for carbon dioxide sequestration.”

Potential earthquake problems arise because the interior of the continent is crisscrossed by ancient faults that are often poised to fail—what Zoback calls “a state of failure equilibrium”—because of the immense tectonic forces acting on them.

Those forces drive the huge tectonic plates across the surface of the globe and trigger the occasional violent upheavals on faults along the plate margins, such as the San Andreas fault zone. Those tectonic forces exist even in the interior of the country, far from California and the San Andreas.

The interior may seem quite stable viewed on a human timescale, but only because the rate at which the intraplate faults are failing is quite slow, Zoback says.

“So, in that context, when we start perturbing the system by changing fluid pressure (as we inject massive amounts of carbon dioxide into the subsurface), we have the potential for activating faults.”

Any earthquake triggered by injecting gas would have happened anyway, because the fault was going to fail eventually.  “You are just advancing the time at which the earthquake occurs,” he says. But the quakes would still be potential hazards to the reservoirs.

Many of the most promising potential sites for reservoirs are saline aquifers about two to three kilometers underground, deep enough that that they are not in contact with the biosphere. There are many such aquifers in ancient geologic formations, especially in the upper Midwest, Zoback says, and since the water in them is too salty for consumption or irrigation, they are good candidates.

But those formations also tend to be dense, well-cemented sedimentary rock, with low permeability, and they may not be able to accept large amounts of fluid before becoming stressed to the point of failure.

“These are the settings most likely to induce seismicity,” Zoback says. “And this is true of many of the places being considered.”

There are other sites, including some with saline aquifers, where the rock is weaker and would be better able to accept large amounts of gas without spawning seismicity.  And because the locations of most large faults are well mapped, it should be fairly easy to avoid provoking the sort of shaking that would harm people and property directly, so the problems are not necessarily insurmountable.

“I am not against carbon dioxide sequestration by any means and it certainly has a role,” Zoback says.  “What I am asking people to consider is whether or not it should really be one of the key components of a strategy for reduction of greenhouse gas.”

Seismicity could create small pathways through the rock by which carbon dioxide would gradually seep back into the air. In addition to failing to solve the problem, a lot of time and money would turn out to have been wasted,  Zoback says.

“If the carbon dioxide permeates back out of the reservoir, the effort to keep it out of the atmosphere will have been futile.”

More news from Stanford University: