Team uses seaweed stuff to make 3D-printed gel

Water-based gels—called homocomposite hydrogels—are both strong and flexible. The gels are composed of alginates—chemical compounds found in seaweed and algae and commonly used as thickening agents and in wound dressings. (Credit: Getty Images)

Researchers merged micro- and nano-sized networks of the same materials harnessed from seaweed to create 3D-printable gels with improved and highly controlled properties.

The printed jelly could have applications in biomedical materials—think biological scaffolds for growing cells—and soft robotics.

Described in the journal Nature Communications, the findings show that these water-based gels—called homocomposite hydrogels—are both strong and flexible. They are composed of alginates—chemical compounds found in seaweed and algae and commonly used as thickening agents and in wound dressings.

Merging different-size scale networks of the same alginate together eliminates the fragility that can sometimes occur when differing materials are merged together in a hydrogel, says Orlin Velev, professor of chemical and biomolecular Engineering at North Carolina State University and corresponding author of the paper.

“Water-based materials can be soft and brittle,” he says. “But these homocomposite materials—soft fibrillar alginate particles inside a medium of alginate – are really two hydrogels in one: one is a particle hydrogel and one is a molecular hydrogel. Merged together they produce a jelly-like material that is better than the sum of its parts, and whose properties can be tuned precisely for shaping through a 3D printer for on-demand manufacturing.”

“We are reinforcing a hydrogel material with the same material, which is remarkable because it uses just one material to improve the overall mechanical properties,” says coauthor Lilian Hsiao, an assistant professor of chemical and molecular engineering. “Alginates are used in wound dressings, so this material potentially could be used as a strengthened 3D-printed bandage or as a patch for wound healing or drug delivery.”

“These types of materials have the potential to be most useful in medical products, in food products as a thickening agent, or in soft robotics,” says Austin Williams, one of the paper’s first coauthors and a graduate student in Velev’s lab.

Future work will attempt to fine-tune this method of merging of homocomposite materials to advance 3D printing for biomedical applications or biomedical injection materials, Velev says.

“This technique may have uses with other types of gels, like those used in coatings or in consumer products,” Hsiao says.

Sangchul Roh, a former PhD student at NC State is the paper’s other first coauthor. Coauthor Simeon Stoyanov from Wageningen University participated in the conception of the new material.

The National Science Foundation funded the work.

Source: NC State