Hanford Site

Radioactive cleanup takes (more) time

IOWA STATE (US) — Distorted formulas have wrongly swayed theories of how long it takes to transform a contaminated area into one free of pollution.

Scientists trying to predict how long contaminated soils and rocks will stay polluted have been using incorrect information about the process, according to a new study that shows that the rates vary according to how porous and connected the rocks are.

Researchers have been working with soil around the Department of Energy’s Pacific Northwest National Laboratory, formerly called the Hanford Site, near Richland, Washington, that was part of the United States’ effort to produce plutonium during the Cold War.

Radioactive waste stored in huge tanks on the site leaked large quantities of uranium into the surrounding soil and rock.

Now, as scientists try to determine how soon the site will be free of contaminants, they have been overestimating how quickly the contaminants will move into the nearby Columbia River, says Iowa State University researcher Robert Ewing.

Ewing_1

Researcher Robert Ewing likens contaminants inside a rock to an ant that has quickly made its way into a maze and then blindly needs to explore several different passageways to find its way back out. (Credit: Bob Elbert)

For years, uranium contamination diffused into microscope pores inside the rocks, Ewing says. In order for the site to be free from contamination, the uranium must first diffuse back out of the rocks.

“Once you remove the source of the problem (the polluting uranium), the contaminant moves back out of the rock slowly,” Ewing says. “The problem is, how do you describe that slow release?”

The key to the answer is the small holes or pores in the rocks. Depending on how porous the rocks are, and how connected those pores are, the rate at which solutions diffuse out of a rock is predictable, he says.

As contaminants inside a rock begin to leach back out, they can take a long, winding journey through the pores. Imagine an ant that has wandered into a maze. It goes into the labyrinth quickly and easily. Coming out, however, it could take hours or days blindly exploring different passageways until it finally, luckily, discovers a way out.

Pollutants inside the rocks at the Hanford site take similar routes out of the rocks and soil they are contaminating.

“Something trying to diffuse out [of the rock] could take decades running into a dead end, and down another dead end, and another, and so forth,” he explains.

And while the rate at which it leaves the rock seems random, it is predictable.

The findings are published in the journal Water Resources Research.

Prior to Ewing’s research, environmentalists had not been able to accurately predict the diffusion rate out of rocks.

“Before this research, we were getting results that weren’t making sense. We’ve been scratching our heads about this for 30 or 40 years,” Ewing says. “This is an enormous step forward.”

The key to understanding the rate of diffusion came when Ewing realized that the distance the contaminant had to travel could vary so greatly, even though it didn’t penetrate the rock very far.

“The pathways out of the rock get really weird. You figure that it could come out slower [than it went in]. But it actually comes out even slower than that,” Ewing says.

Using the new formula, Ewing hopes that future estimates on how quickly contaminated sites can be free of problems will be more accurate.

Ewing says the formula devised for Hanford would apply to other contaminants at many other sites.

More news from Iowa State University: www.news.iastate.edu/

Related Articles