New way to use MRI to measure the brain

Researchers used MRI scans to quantify brain tissue volume, a critical measurement of the progression of multiple sclerosis and other diseases. (Credit: iStockphoto)

Scientists have developed a new method for quantitatively measuring human brain tissue using magnetic resonance imaging (MRI).

The team members measured the volume of large molecules (macromolecules) within each cubic millimeter of the brain. Their method may change the way doctors diagnose and treat neurological diseases such as multiple sclerosis.

[related]

“We’re moving from qualitative—saying something is off—to measuring how off it is,” says Aviv Mezer, postdoctoral scholar in psychology at Stanford University. The team’s work appears in the journal Nature Medicine.

Mezer, whose background is in biophysics, found inspiration in seemingly unrelated basic research from the 1980s. In theory, he read, magnetic resonance could quantitatively discriminate between different types of tissues.

“Do the right modifications to make it applicable to humans,” he says of adapting the previous work, “and you’ve got a new diagnostic.”

Faster and reliable

Previous quantitative MRI measurements required uncomfortably long scan times. Mezer and psychology professor Brian Wandell unearthed a faster scanning technique, albeit one noted for its lack of consistency.

“Now we’ve found a way to make the fast method reliable,” Mezer says.

Mezer and Wandell, working with neuroscientists, radiologists and chemical engineers, calibrated their method with a physical model—a radiological “phantom”—filled with agar gel and cholesterol to mimic brain tissue in MRI scans.

Their results provided a new way to look at a living brain.

Multiple sclerosis

MRI images of the brain are made of many “voxels,” or three-dimensional elements. Each voxel represents the signal from a small volume of the brain, much like a pixel represents a small volume of an image.

The fraction of each voxel filled with brain tissue (as opposed to water) is called the macromolecular tissue volume, or MTV. Different areas of the brain have different MTVs.

Mezer found that his MRI method produced MTV values in agreement with measurements that, until now, could only come from post-mortem brain specimens.

This is a useful first measurement, Mezer says. “The MTV is the most basic entity of the structure. It’s what the tissue is made of.”

The team applied its method to a group of multiple sclerosis patients. MS attacks a layer of cells called the myelin sheath, which protects neurons the same way insulation protects a wire. Until now, doctors typically used qualitative MRI scans (displaying bright or dark lesions) or behavioral tests to assess the disease’s progression.

Myelin comprises most of the volume of the brain’s “white matter,” the core of the brain. As MS erodes myelin, the MTV of the white matter changes. Just as predicted, Mezer and Wandell found that MS patients’ white matter tissue volumes were significantly lower than those of healthy volunteers.

Mezer and colleagues at Stanford School of Medicine are now following up with the patients to evaluate the effect of MS drug therapies. They’re using MTV values to track individual brain tissue changes over time.

The team’s results were consistent among five MRI machines.

Mezer and Wandell will next use MRI measurements to monitor brain development in children, particularly as the children learn to read. Wandell’s previous work mapped the neural connections involved in learning to read. MRI scans can measure how those connections form.

“You can compare whether the circuits are developing within specified limits for typical children,” Wandell says, “or whether there are circuits that are wildly out of spec, and we ought to look into other ways to help the child learn to read.”

Tracking MTV, the team says, helps doctors better compare patients’ brains to the general population—or to their own history—giving them a chance to act before it’s too late.

Source: Stanford University