astronomy ,

My god, it’s full of snooker stars

U. WARWICK / U. SHEFFIELD (UK) — Astronomers have discovered an unusual star system. It resembles—and may have once behaved like—a game of snooker.

Using two decades of observations from telescopes around the world, the international team looked at a binary star system that is 1670 light years away from Earth. NN Serpentis is actually a binary star system consisting of two stars, a red dwarf and a white dwarf, which orbit each other in an incredibly close, tight orbit.

By lucky chance Earth sits in the same plane as this binary star system, so we can see the larger red dwarf eclipse the white dwarf every 3 hours and 7 minutes.

It was already thought that there may be at least one planet orbiting these two stars. However astronomers from the University of Warwick and University of Sheffield were able to use these incredibly frequent eclipses to spot a pattern of small but significant irregularities in the orbit of stars and were able to help demonstrate that the pattern must be due to the presence and gravitational influence of two massive gas giant planets.

The more massive gas giant is about 6 times the mass of Jupiter and orbits the binary star every 15.5 years, the other orbits every 7.75 years and is about 1.6 times the mass of Jupiter. Full details are reported in the journal Astronomy and Astrophysics.

Given the overall shape of the system, and how this star system came to exist, it was hard for the British members of the research team not to think of the game of snooker, which is similar to billiards.

“The two gas giants have different masses but they may actually be roughly the same size as each other, and in fact will also be roughly the same size as the red dwarf star they orbit,” says Tom Marsh, a physics professor from the University of Warwick. “If they follow the patterns we see in our own star system of gas giants with a dominant yellow or blue colors, then it’s hard to escape the image of this system as being like a giant snooker frame with a red ball, two colored balls, and dwarf white cue ball.”

This star system will also have seen dramatic changes in a relatively short period of time: What is now the White Dwarf “cue ball” of the system may have suffered, and caused, violent changes to its own orbit and the orbit of all the planets and stars in the system.

“If these planets were born along with their parent stars they would have had to survive a dramatic event a million years ago: when the original primary star bloated itself into a red giant, causing the secondary star to plunge down into the present very tight orbit, thereby casting off most of the original mass of the primary,” says Vik Dhillon, a professor from the University of Sheffield.

“Planetary orbits would have seen vast disturbances. Alternatively, the planets may have formed very recently from the cast off material. Either way, in relatively recent times in astronomical terms this system will have seen a vast shock to the orbits of the stars and planets, all initiated by what is now the white dwarf at the heart of the system.”

More news from the University of Warwick: www2.warwick.ac.uk/newsandevents/

More news from the University of Sheffield: www.shef.ac.uk/mediacentre/

Related Articles