Can liquid crystals ‘squeeze out’ medicine?

(Credit: Getty Images)

Liquid crystals are strange substances—they can flow like a liquid, but have the orderly molecular structure of a crystalline solid. Small cues from outside, like a change in temperature, can change the internal structure.

Scientists want to exploit that property to turn liquid crystals into a tool to manipulate the shape of synthetic cell membranes carrying a payload. They think it’s possible the liquid crystals could control how the membranes deliver that payload.

“We could deform the vesicle and have it squeeze out whatever it has inside.”

When a cell divides, the spherical cell membrane stretches into an elliptical form, develops a waist in the middle, and then splits into two spherical cells. The scientists built sophisticated models that produced this behavior on the computer and then reproduced it in the real world, testing the model’s predictions.

“It’s the first time that this has been done,” says Juan de Pablo, a molecular engineering professor at the University of Chicago who led the project. “It’s a system that has been engineered at the molecular level using computer models.”

‘Squash it more and more’

Standing in for cells in the experiments were capsules, or “vesicles,” a few microns in diameter (a fraction the width of a human hair) made of some of the same phospholipids that make up real cell membranes. These were immersed in a bath of liquid crystal oil whose molecules are slightly elongated rather than round.

At temperatures above 97 degrees Fahrenheit, the oil behaves like any other oil. But when the temperature is lowered slightly, the molecules of the oil pack tightly against one another like cigarettes and align along a single direction.

“When that happens, the liquid crystal presses on the vesicle more in one direction than in the other, so the vesicle becomes elongated,” de Pablo says. “If you squash it more and more, it becomes an ellipsoid, and the two ends become pointier and pointier.

Liquid crystals may see earliest signs of Alzheimer’s

“There is a point when the molecules around those points separate from one another and create a little gap in the membrane through which things could be squeezed out.”

Lipid vesicles are in current use for drug delivery. De Pablo envisions using the liquid crystal technique as a cunning way to control that process.

“What we find intriguing is that we have a mechanism that will allow us to take vesicles loaded with something interesting, and by changing the temperature a little bit, we could deform the vesicle and have it squeeze out whatever it has inside without our ever touching the vesicle. And then as we restore the temperature to the original value, the vesicle becomes spherical again.”

Calculations indicate that squeezing more or less would alter the size of the gap, allowing for the release of contents of varying sizes.

“But that’s something that we still have to demonstrate,” adds de Pablo.

The National Science Foundation funded the work, which appears in Science Advances.

Source: Carla Reiter for the University of Chicago