View more articles about

"With this study, we now understand how a bunch of puzzle pieces fit together in a network that we’ve demonstrated is critical to stress-induced anxiety," says Michael R. Bruchas. (Credit: iStockphoto)


Beam of light to brain turns on stress in mice

Calming a neural circuit in the brain can alleviate stress in mice, according to new research that could lay the foundation for understanding stress and anxiety in people.

Researchers at Washington University School of Medicine in St. Louis also showed they could shine a light into the brain to activate the stress response in mice that had not been exposed to stressful situations.

“We now have a much better idea of the neural circuit involved in producing anxiety following stress,” says first author Jordan G. McCall, a former graduate student in the laboratory of principal investigator Michael R. Bruchas, associate professor of anesthesiology and neurobiology.

“You can imagine that this same response also may be important to longer-term stress-related problems such as post-traumatic stress disorder (PTSD) or anxiety disorder.”

The work may lead to the development of new treatments for such disorders, as well as for depression and alcohol and drug abuse.

Anxiety after stress

Neuroscientists already knew that a small structure in the brain called the locus coeruleus (LC) plays a key role in stress and anxiety. Neurons in that region secrete the hormone norepinephrine, which surges when a person is under stress.

But using techniques called optogenetics and chemogenetics, the researchers showed they could selectively control the firing of LC neurons, lower norepinephrine levels and prevent the anxiety that normally follows stressful events.

In these techniques, researchers genetically engineer mice with brain cells that have special receptors. Those receptors can be activated by light (optogenetics) or synthetic chemicals (chemogenetics). Those light or chemical signals either trigger or block neuronal activity, giving researchers a way to control the brain circuits in an animal and, thus, the behavior.

Mazes and boxes

As part of the research, the scientists observed mice moving through mazes and roaming freely in an open box.

“Mice usually move toward the wall and try to stay out of the open area, just like a mouse in your house,” Bruchas explains. “Anxious mice rarely venture into the center of the box, whereas mice that feel less anxious roam into the middle more often.”

Mice that experienced stressful events were more likely to stay near the edges of the box. But when mice were treated with stress-lowering drugs—either beta blockers or alpha 1 blockers, which are used to treat high blood pressure and stress in people—the animals were more likely to venture into the middle of the box, even if they had experienced stressful events.

The researchers also found that activating LC neurons with light made mice in the mazes behave as if they were stressed, even when they had not been exposed to a stressful event.

“With this study, we now understand how a bunch of puzzle pieces fit together in a network that we’ve demonstrated is critical to stress-induced anxiety,” Bruchas says.

The study appears in the journal Neuron.

Funding for this research comes from the National Institutes of Health, the McDonnell Center for Systems Neuroscience, and the Washington University Division of Biology and Biological Sciences.

Source: Washington University in St. Louis

Related Articles