diabetes

Inhibit enzymes to calm sugar ‘roller coaster’

PURDUE (US) — Scientists can “toggle” the enzymes that turn starchy food into sugars, and say this could help better control that process in people with type 2 diabetes and obesity.

Bruce Hamaker, a professor of food science and director of the Whistler Center for Carbohydrate Research at Purdue University, says the four small intestine enzymes, called alpha-glucosidases, are responsible for generating glucose from starch digestion.

Each enzyme functions differently and breaks down starches into different sugars at different rates. Someone missing one or more of those enzymes creates glucose improperly.

[sources]

Influx of glucose to the blood increases insulin release from the pancreas, which allows the body to remove the sugar. When the body’s tissues cannot respond well to insulin, the blood sugar is not lowered, a situation seen in type 2 diabetics. Even in non-diabetics, excess sugars not burned by the body as energy may be stored as fat, an issue for people prone to obesity.

“In diabetics, you don’t want this roller coaster of blood-glucose levels. Their bodies can’t regulate glucose that well,” Hamaker says.

“If you can selectively inhibit these enzymes, it opens up the possibility of moderating glucose to the body as well as directing glucose release into different parts of the small intestines for certain physiologic responses.”

Hamaker and Mario Pinto, professor of chemistry and vice president for research at Simon Fraser University in Vancouver, Canada, members of a starch research consortium, led the study. Their results are published in the Journal of Biological Chemistry.

Hamaker’s group did the inhibition studies on starch degradation products and the alpha-glucosidase enzymes, provided by other members of the consortium, in a simulated gastrointestinal tract system.

The inhibitors, developed in Pinto’s laboratory, were able to selectively inhibit the enzymes, a process they have called “toggling,” and could lead to several solutions for diabetics or those prone to obesity.

“We could provide the missing enzymes or develop new starches that will digest properly with the enzymes they do have,” Pinto says. “It’s all about control and using the molecular information we have to control those enzymes.”

Hamaker and Pinto say they would next work to understand how the inhibitors control the intestinal enzymes and refine their understanding of when and where the enzymes should be controlled for the best results.

The US Department of Agriculture funded Hamaker’s portion of the research. The Canadian Institute of Health Research funded Pinto’s work.

Source: Purdue University

Related Articles