View more articles about

New findings about manmade earthquakes could have implications for both the oil and natural gas industry and for government regulators. Under current practices, extraction activities typically shut down in an area if a high-magnitude earthquake occurs. But a better approach might be to limit production before a large quake occurs, Jenny Suckale says. (Credit: iStockphoto)

earthquakes

Size of manmade earthquakes gets bigger over time

Earthquakes triggered by human activity follow several indicative patterns that could help scientists distinguish them from naturally occurring temblors, new research suggests.

Scientists analyzed a sequence of earthquakes on an unmapped basement fault near the town of Guy, Arkansas, from 2010 to 2011. In geology, “basement” refers to rock located beneath a sedimentary cover that may contain oil and other gas reserves that can be exploited through drilling or hydraulic fracturing, also known as “fracking.”

They suspected the Arkansas quakes were triggered by the injection of roughly 94.5 million gallons of wastewater into two nearby wells that extend into the basement layer during a nine-month span. The injected water increases the pore pressure in the basement layer, adding more stress to already stressed faults until one slips and releases seismic waves, triggering an earthquake.

[Earthqauake algorithm works like the app Shazam]

One of the study’s main conclusions is that the likelihood of large-magnitude manmade, or “induced,” earthquakes increases over time, independent of previous seismicity rate. A reservoir simulation model found a linear relationship between frequency and magnitude for induced quakes, with magnitude increasing the longer wastewater is pumped into a well.

“It’s an indication that even if the number of earthquakes you experience each month is not changing, as you go further along in time you should expect to see larger magnitude events,” says postdoctoral researcher David Dempsey, who worked with Jenny Suckale, assistant professor of geophysics at Stanford University and is now at the University of Auckland in New Zealand.

This trend doesn’t continue indefinitely, however. The research shows that induced quakes begin to fall off after reaching some maximum magnitude as the triggered faults release more of their stress as seismic waves.

What it means for fracking

While energy companies might welcome the notion that there are upper limits to how strong an induced quake on a particular fault can be, it’s difficult to know what that ceiling will be.

[Big earthquake jolted fish into fast evolution]

“The question becomes, does it taper off at magnitude 3 or a more dangerous magnitude 6.5?” Suckale says.

Other studies have found that the rate of wastewater injection into a well is more important than the total volume injected for triggering earthquakes. But the new research shows that, given similar rates of wastewater injection, there is a direct correlation between the volume injected and the incidence of earthquakes. Of the two wells studied near Guy, Well 1 received four times the wastewater volume as Well 5, and induced four times as many earthquakes.

“There’s a scaling there in terms of the volume injected,” Dempsey says.

The study’s findings, presented this week at the American Geophysical Union’s fall meeting in San Francisco, could have implications for both the oil and natural gas industry and for government regulators. Under current practices, extraction activities typically shut down in an area if a high-magnitude earthquake occurs. But a better approach might be to limit production before a large quake occurs, Suckale says.

“Very often with these faults, once you have a big earthquake, you might not have one for a while because you just released all the stress.”

Source: John Anderson for Stanford University

Related Articles