‘Tear machine’ might make contact lenses less painful

More than 30 million Americans currently wear contacts, but roughly half of them switch back to glasses because of contact lens-induced symptoms such as dry eye. (Credit: iStockphoto)

Engineers have built a device that mimics the surface of the eye in an attempt to make wearing contact lenses all day less irritating.

The work was inspired in part by a graduate student’s dry eyes.

“As a student, I had to stop wearing lenses due to the increased discomfort,” says Saad Bhamla, a Stanford University postdoctoral scholar in bioengineering. “Focusing my PhD thesis to understand this problem was both a personal and professional goal.”

Bhamla isn’t alone. More than 30 million Americans currently wear contacts, but roughly half of them switch back to glasses because of contact lens-induced symptoms such as dry eye.

Bhamla, who conducted the work as a graduate student in Gerald Fuller’s chemical engineering laboratory, suspected that most of the discomfort arises from the break up of the tear film, a wet coating on the surface of the eye, during a process called dewetting.

They found that the lipid layer, an oily coating on the surface of the tear film, protects the eye’s surface in two important ways—through strength and liquid retention. By mimicking the lipid layer in contact construction, millions of people could avoid ocular discomfort.

Like a swimming pool cover

In their most recent study, Bhamla and his coauthors outline two functions of the lipid layer. One is to provide mechanical strength to the tear film. Lipids in this layer have viscoelastic properties that allow them to stretch and support the watery layer beneath them.

Bhamla likens this protective lipid layer to a swimming pool cover. You can’t run on the open water, but even a thin tarp can provide mechanical strength to support a person’s weight.

[This is how the world might look with a bionic eye]

“You will sometimes see the guards at the Stanford Avery pool run over the surface of the covered pool,” Bhamla says. “The mechanical structure is very thin, but it protects the whole bulk of the liquid. If the swimming pool is shrunk to 1/100th the width of a hair, it is a good representation of the tear film with a lipid layer replacing the tarp.”

The lipid layer also prevents the tear film from evaporating away. Eyes are roughly 95 degrees Fahrenheit (35 degrees Celsius), which is usually warmer than the ambient air. Like any liquid on a hot surface, the eye is constantly heating its liquid coating and losing moisture to the air.

“We recognized early-on that the fluid mechanical responses of the lipid layer were just as important as the conventional view that its role was to control evaporative loss,” Fuller says. “And it’s been gratifying to realize that the combined role of these two forces is now accepted.”

The machine

The key to producing comfortable contact lenses, then, involves designing lenses that don’t destabilize the tear film. Manufacturers recognize the importance of protecting the eye’s natural tear film on a contact lens surface to minimize painful symptoms such as dry eye, but it is not an easy thing to measure.

“Some people are studying contact lenses by holding them up to a light, dipping them in water, and looking at them to see if the tear film breaks up,” Bhamla says. “We felt we could definitely do better than that.”

[Contacts could alter eyeball microbiome]

To solve this, Bhamla and Fuller built a device that mimics the surface of the eye. The machine, called the Interfacial Dewetting and Drainage Optical Platform or i-DDrOP, reproduces a tear film on the surface of a contact lens. It allows both scientists and manufacturers to systematically handle the unique array of variables that affect the tear film, including temperature, a variety of substances, humidity and the way gravity acts along a curved surface.

With the ability to accurately recreate a tear film on the contact lens surface and test how quickly it breaks up, manufacturers are now armed with the tools to make a more comfortable lens that protects users from the painful side effects of wearing contacts. Even Bhamla may trade in his glasses for a new pair of lipid-protected eyewear.

The team describes the new technology in Investigative Ophthalmology and Visual Science.

Source: Rosemary Mena-Werth for Stanford University