View more articles about

"Therapies that 'kick start' autophagy may prove valuable in treating degenerative retinal diseases," says Thomas A. Ferguson. "This is an avenue we plan to explore." (Credit: Simon Wijers/Unsplash)

cells

Vision wastes away if cone cells can’t ‘recycle’

New research identifies a cellular recycling process called autophagy in the eye’s cone cells that they need to function and, in some cases, survive.

The authors of the study believe that if drugs can activate this recycling process, the approach could be used to treat or prevent some retinal diseases.

As many of us learned in high school science class, the retina’s rods and cones allow us to see. Rods are for night vision, and cones operate in bright light and allow us to distinguish colors. But although scientists have an idea of what makes rods perform and flourish, they’ve been somewhat in the dark about what keeps cones working and thriving.

Researchers believe they’re now closer to the answer and that these findings with mice may one day help preserve vision in human patients with age-related macular degeneration and other retinal diseases.

“If we can stimulate this pathway with drugs, we may be able to preserve vision in people with degenerative retinal diseases,” says senior investigator Thomas A. Ferguson, a professor of ophthalmology and visual sciences at Washington University School of Medicine in St. Louis. “The idea would be to stimulate the autophagy process and give cone cells more energy so that they could stay alive for as long as possible.”

Cone cells under stress

Ferguson explains that the autophagy process functions in two ways in cone cells.

“It helps cells survive in stressful situations, but it also functions at a baseline level,” he says. “Proteins and organelles in the cell get old, and they have to be removed. Autophagy is the process that removes them so the cell can continue to function.”

In previous research, Ferguson’s team demonstrated that autophagy clears debris in the retina that is produced when rods and cones convert light into visual signals. In the new study, the researchers found that the process is key to the function of cone cells, allowing them to perceive color and continue sending signals when exposed to bright light.

In several experiments conducted in mice, Ferguson found that when the animals had no food for 24 hours, the process of autophagy became activated.

[New ‘light meter’ discovered in the eye]

“Cone cells, like all neurons, need a lot of energy to function,” he explains. “When the cells are stressed by starvation, the autophagy pathway is activated, and the cells temporarily digest their own proteins to survive. This process not only cleans out debris but allows the cell to use its own energy stores to keep sending visual signals even when there isn’t any external energy to fuel it.”

In other experiments, Ferguson’s team studied mice missing a gene related to autophagy. When those mice didn’t eat for 24 hours, their cone cells didn’t activate the recycling process. As a result, the cells couldn’t function, and the mice began to lose vision.

Intense light

The scientists also discovered that mice without the autophagy gene in their cone cells could not adjust to bright light. Healthy cones survive and function in bright light, but the cells in mice without the gene could not.

“As light gets brighter and brighter, it may be uncomfortable, but we can still see,” Ferguson says. “Even if you’re in the Sahara Desert or some other place with intense sunlight, you can still distinguish shapes and colors. But when we took out the autophagy gene and exposed the mouse cones to bright light, the cells died.”

[Octopus skin can sense light without eyes]

Ferguson says the experiments demonstrate that autophagy is important to the function and survival of cone cells and, consequently, key to vision.

“Therapies that ‘kick start’ autophagy may prove valuable in treating degenerative retinal diseases,” he says. “This is an avenue we plan to explore.”

The study appears online in the journal Autophagy.

Funding for this research comes from the National Eye Institute of the National Institutes of Health. Additional funding comes from Research to Prevent Blindness, the Carl Marshall Reeves and Mildred Almen Reeves Foundation, and the BrightFocus Foundation.

Source: Washington University in St. Louis

Related Articles