I'll eat my alarm clock

Why bodies store fat when we eat at night

VANDERBILT (US) — Insulin activity is controlled by the body’s circadian clock, which helps explain why not only what you eat, but when you eat, matters.

A new study published in the journal Current Biology is the first to definitively show the connection between our circadian rhythm and insulin activity. The findings suggest that a disruption in that rhythm can lead to obesity and increase the risk for diabetes and heart disease.

In recent years, a number of studies in both mice and humans have found a variety of links between the operation of the body’s biological clock and various aspects of its metabolism, the physical and chemical processes that provide energy and produce, maintain and destroy tissue.

It was generally assumed that these variations were caused in response to insulin, which is one of the most potent metabolic hormones. However, no one had actually determined that insulin action follows a 24-hour cycle or what happens when the body’s circadian clock is disrupted.

Because they are nocturnal, mice have a circadian rhythm that is the mirror image of that of humans: They are active during the night and sleep during the day.

Otherwise, scientists have found that the internal timekeeping system of the two species operate in nearly the same way at the molecular level. Most types of cells contain their own molecular clocks, all of which are controlled by a master circadian clock in the suprachiasmatic nucleus in the brain.

“People have suspected that our cells’ response to insulin had a circadian cycle, but we are the first to have actually measured it,” says study co-leader Owen McGuinness, a professor of molecular physiology and biophysics at Vanderbilt University. “The master clock in the central nervous system drives the cycle and insulin response follows.”

Insulin, which is made in the pancreas, plays a key role in regulating the body’s fat and carbohydrate metabolism. When we eat, our digestion breaks down the carbohydrates in our food into the simple sugar glucose, which is absorbed into the blood stream.

Too much glucose in the blood is toxic, so one of insulin’s roles is to stimulate transfer of glucose into our cells, thereby removing excess glucose from the blood. Specifically, insulin is required to move glucose into liver, muscle and fat cells. It also blocks the process of burning fat for energy.

Insulin action—the hormone’s ability to remove glucose from the blood—can be reduced by a number of factors and is termed insulin resistance.

‘Fast every day’

The team at Vanderbilt found that normal “wild-type” mouse tissues are relatively resistant to insulin during the inactive/fasting phase whereas they become more sensitive to insulin (therefore better able to transfer glucose out of the blood) during the high activity/feeding phase of their 24-hour cycle.

As a result, glucose is converted primarily into fat during the inactive phase and used for energy and to other tissue building during the high activity phase.

“That is why it is good to fast every day . . . not eat anything between dinner and breakfast,” says study co-leader Carl Johnson, professor of biological sciences.

The researchers also examined what happened to insulin action when the circadian clocks of individual mice are disrupted.

One approach that they used was to study special “knock-out” mice that had one of the genes necessary for proper biological clock function removed. They found these mice appeared to be locked in an insulin-resistant mode around the clock comparable to the inactive/fasting phase.

After feeding on a high-fat diet, they tended to gain more weight and carry more fat than wild-type mice. However, supplying them with the protein produced by the missing gene re-established their circadian rhythm, reduced their insulin resistance and prevented them from gaining excess fat.

Up all night

Another approach was to place normal “wild-type” mice in a constantly lit environment that disrupted their circadian cycle. In this case, they found the mice were locked in the inactive/fasting phase, developed a higher proportion of body fat and gained more weight on a high-fat diet than wild-type mice despite actually eating less food.

Obesity and the insulin resistance that accompanies it, increases the risk of diabetes and cardiovascular disease.

According to the researchers, this helps explain the increased frequency of obesity and diabetes among night-shift workers and people suffering from disruption of their clocks and normal sleep patterns.

The researchers also found that high-fat diets disrupted the circadian clock of wild-type mice living in a normal day/night cycle. As a result, their insulin cycle defaulted to the inactive/fasting phase, which helps explain why high-fat diets lead to weight gain.

The National Institute of Diabetes and Digestive and Kidney Diseases, National Heart, Lung and Blood Institute, and the Brain and Behavior Research Foundation supported the research.

Source: Vanderbilt University

chat5 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

5 Comments

  1. Carole Quante

    Virtually unreadable article. For instance, did you really mean to say that insulin activity is termed insulin resistance? Also, the study co-leader indicates one should eat morning and night, it doesn’t look to me as thought the rest of the article supports this. I would think the findings indicate the best mealtimes to be breakfast and lunch, not just before bed.
    This needs an editor for clarity.

  2. Steve B

    Actually the co-leader insuinuates that one shouldnt eat after dinner until breakfast, meaning that to be in a fasting state, when insulin levels are at our lowest, will help decrease conversion of glucose into fat. Insulin resistance is one of the barriers referred to that will affect insulins “action” and ability to drive glucose into the cell. Hence why people with type 2 dm initially need medications that increase insulin sensitivity and ability to enter muscle and liver cells. Excess adipose or fat tissue acts as a barrier too, which is why wright reduction, hopefully will delay that process as well. :)

  3. Carlos Martinez

    Can you be more clear and specific.

  4. http://echelonstudios.us/blog1/2012/08/22/jack-hunter-and-the-lost-treasure-of-ugarit

    Simply want to say your article is as astonishing.
    The clearness for your put up is just cool and i could assume you’re knowledgeable on this subject.
    Well along with your permission let me to grab your RSS feed to stay up
    to date with impending post. Thank you 1,000,000 and please keep up
    the enjoyable work.

  5. svetlana

    Often when an article has really hit onto something there are allot of critics. This is a great article and for the first time ever I have read something which explains this as I have come to understand the root cause of insulin resistance over the years. I always suspected there was a connection between insulin resistance and the body cycle.

We respect your privacy.