skullcast_Emory_1

Virtual skull: 3D peek at hominid brain

EMORY (US) — A virtual endocast of a hominid skull that dates back nearly 2 million years raises questions about the evolution of the human brain.

The Australopithecus sediba skull is from the most complete early hominid fossils ever found. While some features of A. sediba were more human-like, most notably the precision-grip hand, the brain was more ape-like, says Emory University anthropologist Dietrich Stout.

“It’s basically a primitive brain that looks a lot like other austrolopiths, although you can see what could be the first glimmerings of a reorganization to a more human pattern.”

If A. sediba is a human ancestor, as some have proposed, then its fossils could help resolve long-standing debates about human brain evolution, says Stout, who is part of a team that reported the findings this month in a special issue of the journal Science.


An endocast of the A. sediba skull was created using synchrotron radiation, giving scientists a high-resolution, 3D view of life 2 million years ago. (Courtesy: Kristian Carlson, University of the Witwatersrand)

“The brain defines humanity, leading early anthropologists to expect that the brain changed first, and then the rest of the body followed,” Stout says. “More recently, it has been assumed that the brain and other human traits evolved together.”

The A. sediba find suggests a more “mosaic” pattern of evolution, he says. “The more modern hand paired with a primitive brain is a cautionary tale for what inferences can be drawn about a whole body from fossil fragments.”

We are family?

The new species was discovered in a region of South Africa known as the Cradle of Humanity, by paleontologist Lee Berger of University of the Witwatersrand (Wits) in Johannesburg. After announcing the find in 2010, Berger and colleagues began making the case that A. sediba may be the bridge between more primitive austropiths and the human genus, Homo.

The debate over whether A. sediba is a human ancestor will likely continue, even as more material is excavated from a limestone cave called Malapa, one of the richest hominid fossil sites ever found.

“The site is especially exciting because the A. sediba skeletons are nearly complete,” Stout says. “We can relate the face to the hand and the body and the brain of a single individual. A. sediba is represented by the most complete hominid skeletons we have, until we get up to the Neanderthals.”

Stout studies the relationship between stone tools and brain evolution, and is an expert in functional adaptation of neuroanatomy. He was invited to assist in the analysis of the cranium of a young A. sediba male, estimated to be 12 to 13 years old at the time of death, with brain growth essentially complete.

3D glimpse inside

The virtual endocast gives a three-dimensional view of the surface features of the cranium, which was missing only part of the right side and the back. The high-resolution images reveal bumps and ridges and even impressions from blood vessels.

“You can actually see the morphology of the brain inside a skull,” Stout says. “Bone is a lot more alive and plastic than many people realize. It’s constantly being remodeled and shaped and the growing brain does a lot to shape the skull around it.”

The researchers estimate that the brain was 420 cubic centimeters, around the size of a grapefruit. “That’s tiny and about what you’d expect for a chimpanzee,” Stout says.

The face, however, of A. sediba was far less protruded than that of a chimpanzee. “We don’t fully understand how the human face got smaller and tucked under the brain case, although that may have a lot to do with diet and chewing,” Stout says.

“That further complicates matters. The relationship of human brain evolution to cognitive changes and other biological and behavioral changes is something we have to keep looking at.”

Connect the bumps

The researchers took a band of measurements on the underside of the A. sediba frontal lobes and did a comparative analysis with humans, chimpanzees, and other hominids.

While the A. sediba brain clearly was not a human configuration, a surface bump shows possible foreshadowing of Broca’s area, a region of the human brain associated with speech and language, Stout says. “It’s a big leap, however, to go from a surface bump to really understanding what the cells were doing beneath it,” he adds.

The researchers plan to expand the analysis, gathering data from more scans of chimpanzee skulls and more hominid fossil specimens from East and South Africa. “We want to put as many dots on a comparative graph as we can, to help show us where A. sediba fits in,” Stout says.

Use of simple stone tools by hominids began about 2.5 million years ago. Was A. sediba a toolmaker? Its hands appear associated with that activity, Stout says, but the evidence is still incomplete. “For now, A. sediba raises more questions than it answers.”

More news from Emory University: http://esciencecommons.blogspot.com/

chat2 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

2 Comments

  1. Petr Jandacek

    Extant hominins (sapiens) as well as ALL hominins of Eurasia and Africa could always interbreed. Dryopithecenes could interbreed with Homo and Australopithecus wherever common geography allowed.
    Large brained timber wolves can interbreed with mentally defective Sharpeis, Maned wolves and Cape Hunting Dogs. Why are so many anthropologists so opposed to “Out of Everywhereica”. If Lucy’s femur-head fits into the pelvis of floresiensis perfectly, and their wrists, feet teeth and cranium etc are so similar — WHY should Lucy and Sediba be Australopithecenes BUT the Hobbit be Homo floresiensis ??????
    I propose that we call the Flores Island Hominin — “LatterDay Australopithecus floresiensis”
    For more info see http://www.jandacek.com p.jandacek@gmail.com

  2. Simon Wilby

    This is one of my favorite websites. Excellent post, keep it up.

We respect your privacy.