beam_525

Tractor beam is ‘science fiction made real’

NYU (US) — A tractor beam can pull microscopic particles and has a range of potential uses, from microfluidics to far-out tasks like grabbing dust from comet tails.

“This is science fiction made real,” says David Grier, physics professor at New York University and one of the paper’s co-authors. “This tractor beam moves objects back to its source, just like those in so many sci-fi movies, but with very small pieces.”

The so-called optical conveyor tractor beam builds upon an earlier Grier creation: optical solenoid, or spiraled, beams, which can be used to confine and pull small objects—a couple micrometers in size—over a range of eight micrometers.

By contrast, the conveyor tractor beam has demonstrated moving particles distances of 30 to 40 micrometers. Together, they are the only working tractor beams in the world.

“The field of tractor beams is really in its infancy,” says doctoral student David Ruffner, and the paper’s other co-author. “There is great potential for advances.”

Published in the journal Physical Review Letters, the work applies Newton’s third law of motion: for every action, there is an equal and opposite reaction. In this case, the action is the scattering of the beam off the particle and the reaction is the motion of the particle. In principle, this is akin to shooting a watermelon seed using your thumb and forefinger—if you grasp the seed in the right location, you can shoot the seed toward you rather than away.

In this case, the beam of light functions as fingers. However, Grier and Ruffner’s creation uses only a single light beam, whose internal properties allow it to surround and squeeze particles in hauling them back to the light’s source.

While the researchers are now working on ways to increase the weight the beam can hold as well as the distances it can move objects, it may have immediate applications. For instance it could transport biological cells in three dimensions toward arrays of chemical sensors in a microfluidic device, which controls fluids under a millimeter in scale.

A more ambitious long term application would be sending these beams into comets to pull out dust samples in space probe missions—an improvement over current methods such as those used by NASA’s rover Curiosity, which recently landed on Mars. Curiosity relies on a mechanical arm, which has several moving parts and, therefore, is susceptible to breaking.

A beam of light, by contrast, has no mechanical properties, eliminating the possibility of structural damage. Moreover, the beam would pull in, rather than scoop up, particles, thereby preserving their make-up in ways current methods cannot achieve.

The research was supported by a grant from the National Science Foundation.

Source: New York University

chat3 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

3 Comments

  1. mikeq

    I love reading about this stuff, wish I could be involved in research like this.
    O well, to little to late.
    Keep up the good work!
    God Bless!

  2. Sam Medina

    Wow… I SO want one of these. Seriously, folks, keep at it! It just might be the key to teleportation tech. :)

  3. mordican

    Appreciating the hard work you put into your website and in depth information you present.
    It’s awesome to come across a blog every once in a while that isn’t the same out of date
    rehashed material. Wonderful read! I’ve saved your site and I’m adding your RSS feeds to my Google account.

We respect your privacy.