There’s math hiding in the music we love

MCGILL (CAN) / STANFORD (US) — After analyzing close to 2,000 compositions, researchers have uncovered a mathematical formula governing the rhythmic patterns in music.

“One of the things that we’ve known about music for a couple of decades is that the distribution of pitches and loudness in music follow predictable mathematical patterns,” says Daniel Levitin, a neuroscientist at McGill University and co-author of the study published in the Proceedings of the National Academy of Sciences.

“Rhythm is even more fundamental to our enjoyment of music: it’s rhythm that infants respond to first, it’s rhythm that makes you want to get out of your chair and move, and so it’s not really a surprise to discover that rhythm, too, is governed by a similar mathematical formula.”

Levitin and Vinod Menon, a neuroscientist at Stanford University, led the team that analyzed the scores of close to 2,000 musical compositions written by more than 40 composers over the last 400 years in a large variety of Western musical genres.

They found that all the musical compositions they studied shared the same “fractal” quality, where the part is a more limited repetition of the whole. That is the larger temporal structure of well-formed musical pieces is composed of repeating motifs of their own short-term temporal structure.

At the same time, researchers also discovered that each composer had his or her own highly individual rhythmic signature.

“This was one of the most unanticipated and exciting findings of our research,” asserts Levitin. “Mozart’s notated rhythms were the least predictable, Beethoven’s were the most, and Monteverdi and Joplin had nearly identical, overlapping rhythm distributions. But they each have their own distinctive rhythmic signature that you can capture.

“Our findings also suggest that rhythm may play an even greater role than pitch in conveying a composer’s distinctive style.”

From snowflakes to fern fronds and broccoli florets, fractal patterns are to be found throughout the natural world. The discovery that four centuries of musical compositions obey this same mathematical rule strongly suggests that composers’ own brains may have incorporated certain regularities of the physical world, to recreate self-similarity in works of musical art.

Indeed, the authors suggest, building on work begun in the 1970s that our sensory and motor systems may have a fundamental propensity to both perceive and produce fractal patterns not just across the three dimensions of space, but also across time.

The research was funded by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the National Science Foundation.

More news from McGill University:

chat9 Comments


  1. Steve

    This is really cool stuff. I’ll have to see if I can detect these patterns while i listen to the radio tonight. I wonder if they are present in all types of music – rock, rap, pop, etc.

  2. sushanta

    I need more details on this; anyone??

  3. Pete

    The great composers knew how to make their music resonate in our nervous systems; think the Messiah/Handel. Perhaps we’re beginning to understand how these artists achieved their music’s connection with our limbic system.

  4. Kishan Pandya

    It would be nice to actually hear some musical examples!

  5. Jack

    It’s not surprising that composers have a signature rhythm to their composition. The “simple” answer could be that the signature rhythm is the result of their training. We all go through high school, but then do better in some subjects than others. So, we focus on that which we are good at later in life. Similarly, if composed something successful, I’d tend to compose other songs which have some underlying similarity. Doing what Mozart does, i.e. creating very different songs each time, would be incredibly difficult and contrary to the way we do things. We don’t and can’t expect singers to sing differently every time, can we? So, why should we expect composers to compose differently all the time?

  6. John

    So where’s the actual paper?

  7. Ilse

    Absolutely fascinating. I am currently busy with my masters degree in music on the topic of fractals and music. If anyone can suggest some compositions for analysis, I would be very grateful.

  8. Henok

    I have been trying a lot to nderstand this things very well,and i dont think i have fully understood it. Plaese would you expain more in detail(with graphical representations.Thank u.

  9. Maria

    I like your article and am very interested to read more.

We respect your privacy.