Microbe helps switchgrass ‘detox’ polluted soil

"What's new in this story is that we can actually help the process along by adding the proper bugs (LB400) to the root zone at the time of planting and beyond," says Jerry Schnoor. (Credit: eXtension Farm Energy/Flickr)

Switchgrass successfully removed up to 40 percent of the PCBs from contaminated soils in lab experiments. When a PCB-oxidizing microorganism joined in, the removal rate reached 47 percent.

The finding may lead to a natural, environmentally friendly approach to reducing PCBs (polychlorinated biphenyls), toxic chemicals used for cooling and other industrial purposes. The US Congress banned their use in 1979 but they still permeate US soils, waterways, and living organisms.

In some communities bordering Lake Michigan, for example, residents are advised to limit their consumption of locally caught fish, due to industrial release of thousands of tons of PCBs during the 1950s and 1960s.

The researchers investigated how adding an aerobic PCB-oxidizing microorganism could enhance the oxidation of certain PCB congeners (PCB 52, PCB 77, and PCB 153). “It seems to have worked for at least one of the congeners studied,” says Tim Mattes, associate professor of civil and environmental engineering at the University of Iowa and corresponding author of the paper in Ecological Engineering.

“One surprising finding was that the presence of the switchgrass seemed to promote the survival and the activity of the added (aerobic PCB-oxidizing microorganism) LB400 bacteria,” Mattes adds.

Spiking the soil

For the current study, researchers spiked soil with a mixture of PCBs at concentrations commonly found in soils and sediments—and which pose a potential risk to human and environmental health. The contaminated soil was aged for two months at 25 degrees Celsius (77 degrees Fahrenheit) in sealed tubs to allow PCBs to fully leach into the soil and thereby better represent real-life conditions.

Plastic containers, each filled with about 5.5 pounds of soil, were planted with switchgrass (Panicum virgatum) seeds. An unplanted reactor and a switchgrass-planted reactor filled with clean soil were used as controls. Soil samples were analyzed at 12 weeks and 24 weeks.

Researchers found that after 24 weeks, about 40 percent of total PCB mass had been removed by the switchgrass-treated soil, significantly higher than the 30 percent removed from untreated soil.

Soil applied with a PCB-oxidizing microorganism (Burkholderia strain LB400) was found to remove about 47 percent of one of the PCBs tested. Also, the presence of switchgrass appeared to facilitate the microorganism’s survival in the soil.

The ‘bugs’ aren’t a given

“Normally, we think that if we can get plants to grow in degraded lands (so-called brownfields) that the proper ‘bugs’ will grow in the root zone to degrade the contaminants,” says Jerry Schnoor, coauthor and civil and environmental engineering professor.

[related]

“What’s new in this story is that we can actually help the process along by adding the proper bugs (LB400) to the root zone at the time of planting and beyond.”

“The possibility of synergistic interactions between the switchgrass and the bioaugmented PCB-degrading bacteria suggests that employing both plants and bacteria in PCB remediation strategies holds promise for enhanced removal of these recalcitrant compounds from contaminated sites,” Mattes says.

He notes that he currently is studying which microbes work in the root zone of the plant to transform PCBs by a process called reductive dechlorination.

The National Institute of Environmental Health Sciences Superfund Research Program, as well as a fellowship for coauthor Yi Liang from the Comment Center for Biocatalysis and Bioprocessing at the University of Iowa, supported the work.

Source: University of Iowa