low-fluorescent_1

Surgeons remove ‘glowing’ cancer

PURDUE (US) — The first fluorescence-guided surgery on an ovarian cancer patient was performed using a cancer cell “homing device” and imaging agent.

The surgery was one of 10 performed as part of the first phase of a clinical trial to evaluate a new technology to aid surgeons in the removal of malignant tissue from ovarian cancer patients. The method illuminates cancer cells to help surgeons identify and remove smaller tumors that could otherwise be missed.

httpv://www.youtube.com/watch?v=CcUFTLVonqs

Philip Low, a professor of chemistry at Purdue University, who invented the technology, says surgeons were able to see clusters of cancer cells as small as one-tenth of a millimeter, as opposed to the earlier average minimal cluster size of 3 millimeters in diameter based on current methods of visual and tactile detection.

“Ovarian cancer is notoriously difficult to see, and this technique allowed surgeons to spot a tumor 30 times smaller than the smallest they could detect using standard techniques,” says Low. “By dramatically improving the detection of the cancer—by literally lighting it up—cancer removal is dramatically improved.”

The technique attaches a fluorescent imaging agent to a modified form of the vitamin folic acid, which acts as a “homing device” to seek out and attach to ovarian cancer cells.

Future of surgery

Patients are injected with the combination two hours prior to surgery and a special camera system, called a multispectral fluorescence camera, then illuminates the cancer cells and displays their location on a flat-screen monitor next to the patient during surgery.

The surgeons involved in this study reported finding an average of 34 tumor deposits using this technique, compared with an average of seven tumor deposits using visual and tactile observations alone. A paper detailing the study was published in Nature Medicine.

Gooitzen van Dam, a professor and surgeon at the University of Groningen in the Netherlands, where the surgeries took place, says the imaging system fits in well with current surgical practice.

“This system is very easy to use and fits seamlessly in the way surgeons do open and laparoscopic surgery, which is the direction most surgeries are headed in the future,” says van Dam. “I think this technology will revolutionize surgical vision. I foresee it becoming a new standard in cancer surgery in a very short time.”

Research has shown that the less cancerous tissue that remains, the easier it is for chemotherapy or immunotherapy to work, Low notes.

“With ovarian cancer it is clear that the more cancer you can remove, the better the prognosis for the patient,” he says. “This is why we chose to begin with ovarian cancer. It seemed like the best place to start to make a difference in people’s lives.”

By focusing on removal of malignant tissue as opposed to evaluating patient outcome, Low dramatically reduced the amount of time the clinical trial would take to complete.

“What we are really after is a better outcome for patients, but if we had instead designed the clinical trial to evaluate the impact of fluorescence-guided surgery on life expectancy, we would have had to follow patients for years and years,” he says.

“By instead evaluating if we can identify and remove more malignant tissue with the aid of fluorescence imaging, we are able to quantify the impact of this novel approach within two hours after surgery. We hope this will allow the technology to be approved for general use in a much shorter time.”

Low and his team are now making arrangements to work with the Mayo Clinic for the next phase of clinical trials.

Low also is investigating targeting molecules that could be used to carry attached imaging agents or drugs to forms of cancer that do not have folate receptors.

Going deeper

He next plans to develop a red fluorescent imaging agent that can be seen through the skin and deep into the body. The current agent uses a green dye that had already been through the approval process to be used in patients, but cannot easily be seen when present deep in tissue. Green light uses a relatively short wavelength that limits its ability to pass through the body, whereas the longer wavelengths of a red fluorescent dye can easily be seen through tissue.

“We want to be able to see deeper into the tissue, beyond the surface,” Low says. “Different cancers have tumors with different characteristics, and some branch and wind their way deeper into tissue. We will continue to evolve this technology and make improvements that help cancer patients.”

Low is the chief science officer for Endocyte Inc., a company that develops receptor-targeted therapeutics for the treatment of cancer and autoimmune diseases. Endocyte holds the license to the folate receptor-targeting technology and is spinning this technology off into a new company called OnTarget.

The clinical trial was funded by Endocyte Inc. and the University Medical Center of Groningen.

More news from Purdue University: www.purdue.edu/newsroom

chat2 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

2 Comments

  1. Paul Bracken

    AMAZING, GOD BLESS YOU, I WISH YOU COULD HELP MY MOTHER. HER NAME IS ELIZABETH BRACKEN AND SHE HAS ADVANCED OVARIAN CANCER. I WISH THAT WAS MY MOTHER BEING OPERATED ON IN THAT VIDEO. AMAZING.

  2. Pam

    I am 43, with 5 children- one being a 19 month old special needs baby we adopted. I live in Springfield, Mo and I’m having surgery with Dr. Stamps in a couple of days for suspicios ovarian mass. I am wondering if this procedure is available now …..since it has been 10 months since this was posted. It sounds like it could make surgery and outcome better for ovarian cancer patients.

We respect your privacy.