Play Video

To test lung function, blow into any phone

"We wanted to be able to measure lung function on any type of phone you might encounter around the world—smartphones, dumb phones, landlines, pay phones," says Shwetak Patel. "With SpiroCall, you can call a 1-800 number, blow into the phone, and use the telephone network to test your lung function."  (Credit: iStockphoto)

Most people in the developing world who have asthma, cystic fibrosis, or other chronic lung diseases have no way to measure how well their lungs are functioning outside of a clinic or doctor visit.

But many do have access to a phone, though it may be a 10-year-old flip phone or a communal village landline instead of the latest app-driven smartphone.

With that in mind, researchers have developed SpiroCall, a new health-sensing tool that can accurately measure lung function over a simple phone call.

Testing shows that that SpiroCall’s results are within 6.2 percent of results from clinical spirometers used in hospitals and doctor’s offices, meaning it meets the medical community’s standards for accuracy.

“We wanted to be able to measure lung function on any type of phone you might encounter around the world—smartphones, dumb phones, landlines, pay phones,” says Shwetak Patel, professor of computer science & engineering and electrical engineering at the University of Washington. “With SpiroCall, you can call a 1-800 number, blow into the phone, and use the telephone network to test your lung function.”

The researchers will present a paper on the device at the Association for Computing Machinery’s CHI 2016 conference.

In 2012, researchers from the UbiComp Lab introduced SpiroSmart—which lets people monitor their lung function by blowing into their smartphones.

The patients take a deep breath in and exhale as hard and fast as they can until they can’t exhale any more. The phone’s microphone senses sound and pressure from that exhalation and sends the data to a central server, which uses machine learning algorithms to convert the data into standard measurements of lung function.

“People have to manage chronic lung diseases for their entire lives,” says lead author Mayank Goel, a computer science and engineering doctoral student. “So there’s a real need to have a device that allows patients to accurately monitor their condition at home without having to constantly visit a medical clinic, which in some places requires hours or days of travel.”

spirosmart test in Bangladesh
In testing SpiroSmart in clinics in India and Bangladesh, Mayank Goel (front row, center) and collaborators learned that many patients did not have access to a smartphone. (Credit: U. Washington)

Any phone in the world

Over the last four years, researchers have collected data from more than 4,000 patients who have visited clinics in Seattle and Tacoma as well as in India and Bangladesh, where clinicians have measured lung function using both SpiroSmart and a commercial spirometer. That comparative data has improved the performance of the machine learning algorithms and laid the groundwork for team’s current FDA clearance process.

In surveying patients from India and Bangladesh, though, the team realized that a significant percentage did not own smartphones and would be unable to use SpiroSmart in their own homes—which was a key goal of the project.

The team realized that the only sensor they were using was a microphone, which all phones have. So the researchers decided to develop a system that would work with any phone anywhere in the world by having the patient use a call-in service.

SpiroCall transmits the collected audio using a standard phone channel—as opposed to a sound file that is transferred by a smartphone app over the internet. The team combined multiple regression algorithms to provide reliable lung function estimates despite the degraded audio quality.

[How you use your iPhone could reveal depression]

“We had to account for the fact that the sound quality you get over a phone line is worse,” says co-author Elliot Saba, an electrical engineering doctoral student. “You can imagine how listening to someone play a song over a phone line would sound compared to listening to it on your music app—there’s a similar difference with a spirometry test.”

Despite those challenges, SpiroCall delivered results over a standard cellphone voice channel that were within 6.2 percent of the same patient’s test results from a commercial spirometer. Because of variability in the way a patient exhales during each spirometry test, the industry considers anywhere from 5 to 10 percent to be within an acceptable margin of error.

spirocall on cell
SpiroCall lets patients measure lung function over a phone call. It doesn’t require a smartphone. (Credit: U. Washington)

Just whistle

The researchers also developed a 3D printed whistle that can be used in conjunction with SpiroCall that changes pitch when the patient exhales. The whistle is designed to address training challenges by enabling patients to hear what a “good” test sounds like. It also improved test performance for patients who are very ill and whose vocal cords are not able produce enough sound for the phone’s microphone to pick up.

Future steps for the research team include additional data collection and figuring out how best to communicate test results in a way that will make sense to patients.

[Device rotates a single cell to take 3D images with a phone]

“Our research area is not just about sensing, but human-centered sensing,” Goel says. “Because this project has been around for four years, we’ve been able to talk to a lot of patients about how they’re able to use the technology, and that feedback has really helped us make smart improvements.”

The Life Sciences Discovery Fund, the Wallace H. Coulter Foundation, and the University of Washington funded the work.

Source: University of Washington