Pitt_gel_525

Self-moving gel lets material ‘talk to itself’

U. PITTSBURGH (US) — Scientists have discovered a synthetic material that can rebuild itself through chemical communication.

In a paper published in the January 8 print edition of the Proceedings of the National Academy of Sciences, the research team demonstrates that a synthetic system can reconfigure itself through a combination of chemical communication and interaction with light.

Anna Balazs, principal investigator of the study and professor of chemical and petroleum engineering in the University of Pittsburgh’s Swanson School of Engineering, has long studied the properties of the Belousov-Zhabotinsky (BZ) gel, a material first fabricated in the late 1990s and shown to pulsate in the absence of any external stimuli.

In a previous study, the team noticed that long pieces of gel attached to a surface by one end “bent” toward one another, almost as if they were trying to communicate by sending signals. This hint that “chatter” might be taking place led the team to detach the fixed ends of the gels and allow them to move freely.

Balazs and her team developed a 3D gel model to test the effects of the chemical signaling and light on the material. They found that when the gel pieces were moved far apart, they would automatically come back together, exhibiting autochemotaxis—the ability to both emit and sense a chemical, and move in response to that signal.

“This study demonstrates the ability of a synthetic material to actually ‘talk to itself’ and follow out a given action or command, similar to such biological species as amoeba and termites,” says Balazs.

“Imagine a Lego set that could by itself unsnap its parts and then put itself back together again in different shapes but also allow you to control those shapes through chemical reaction and light.”

“We find this system to be extremely exciting and important because it provides a unique opportunity to study autochemotaxis in synthetic systems,” says Olga Kuksenok, a member of the research team and research associate professor in the department of chemical engineering.

The National Science Foundation, Army Research Office, and Air Force Office of Scientific Research supported the research.

Source: University of Pittsburgh

chat2 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

2 Comments

  1. GLENN HILL

    Is this manipulation of BZ Gel ready for the commercial application testing process? We can see many potential important new applications that can solve problems that have appeared insurmountable in the past (such as sealing minute leaks of pressurized systems in the vacuum of space). There are many venture capital funds willing to take new and basic technology into the world of commercial applications.
    There is a great deal of money that can be made available for such a proven new idea as this. It is a lengthy process but starts with being able to show at least one prototype application that may move from a proven new idea in the lab to a viable profit making venture within 5 years. The developers of this wonderful new application of scientific determination and testing should be very proud of themselves.

  2. tesmith47

    well damn, science follows fiction, terminator 2 anybody?

We respect your privacy.