Star Trek transporter

Quantum system teleports an atom

For the first time, physicists have transmitted an atom from one location to another inside an electronic chip.

The findings could lead to larger electronic networks and more functional electronic chips, says Arkady Fedorov of the ARC Centre of Excellence for Engineered Quantum Systems and the School of Mathematics and Physics at the University of Queensland.

“This is a process by which quantum information can be transmitted from one place to another without sending a physical carrier of information,” Fedorov says.

“In this process the information just appears at the destination, almost like teleportation used in the famous science fiction series Star Trek.”

Fedorov says the key resource of quantum teleportation was a special type of correlation, called entanglement, shared between a sender and a receiver.

“Once entanglement is created, this ‘impossible’ information transfer becomes in fact possible thanks to laws of quantum mechanics,” Fedorov says.

“For the first time, the stunning process of quantum teleportation has now been used in a circuit to relay information from one corner of the sample to the other.

“What makes our work interesting is the system uses a circuit, much like modern computer chips.

“In our system the quantum information is stored in artificial structures called quantum bits, and you can even see them with your bare eyes. This is surprising because people typically expect quantum only at atomic scales, not even visible with electronic microscopes.

“This quantum information allows us to do teleportation with impressive speed and accuracy above what has been achievable to date.”

“In our Superconducting Quantum Devices laboratory at UQ we are using this technology to further enhance our knowledge about the quantum nature,” Fedorov says. “Eventually this technology will be used to create more powerful devices.”

This research indicates that questions relating to the physics of quantum communication can be addressed using electronic circuits at microwave frequencies.

“One may even foresee future experiments in which quantum information will be distributed over larger distances directly by microwave to optical interfaces for quantum communication,” says Fedorov.

Teleportation is expected to find applications in secure communication and in more efficient information processing based on the laws of quantum physics.

Researchers from ETH Zurich also contributed to the study, which is published in Nature.

Source: University of Queensland