WardScience_NYU_1

Polyhedron ‘cage’ acts as molecular trap

NYU (US) — Chemists have created a molecular polyhedron, an assembly that has the potential to impact a range of industrial and consumer products, including magnetic and optical materials.

Researchers have sought to coerce molecules to form regular polyhedra—three-dimensional objects in which each side, or face, is a polygon—but without sustained success. Archimedean solids, discovered by the ancient Greek mathematician Archimedes, have attracted considerable attention in this regard.

These 13 solids are those in which each face is a regular polygon and in which around every vertex—the corner at which its geometric shapes meet—the same polygons appear in the same sequences.

In a truncated tetrahedron for example, the pattern forming at every vertex is hexagon-hexagon-triangle. The synthesis of such structures from molecules is an intellectual challenge.

The new work, reported in the journal Science, forms a quasi-truncated octahedron, which also constitutes one of the 13 Archimedean solids. Moreover, as a polyhedron, the structure has the potential to serve as a cage-like framework to trap other molecular species, which can jointly serve as building blocks for new and enhanced materials.

“We’ve demonstrated how to coerce molecules to assemble into a polyhedron by design,” says Michael Ward, professor of chemistry at New York University and one of the study’s co-authors. “The next step will be to expand on the work by making other polyhedra using similar design principles, which can lead to new materials with unusual properties.”

The research team’s creation relies on a remarkably high number of hydrogen bonds—72—to assemble two kinds of hexagonal molecular tiles, four each, into a truncated octahedron, which consists of eight molecular tiles.

Although chemists often use hydrogen bonds because of their versatility in building complex structures, these bonds are weaker than those holding atoms together within the molecules themselves, which often makes larger scale structures constructed with hydrogen bonds less predictable and less sustainable.

The newly discovered truncated octahedron is remarkably stable, however, because the hydrogen bonds are stabilized by the ionic nature of the molecules and because no other outcomes are possible.

In fact, the truncated octahedra assemble further into crystals that have nanoscale pores, resembling a class of well-known compounds called zeolites, which are made from inorganic components.

Because the structure also serves as a molecular cage, it can house, or encapsulate, other molecular components, giving future chemists a vehicle for developing a range of new compounds.

Researchers from the University of Milan contributed to the study.

More news from NYU: www.nyu.edu/public.affairs/

chat0 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

0 Comments

We respect your privacy.