nematode_1

No sex life leaves worms short on genes

U. MARYLAND (US) — Worms that reproduce without a mate have not only lost their mojo in the dating game of evolution, they’ve lost thousands of genes as a consequence.

Self-fertilizing nematodes, or roundworms, have only about two thirds as many active genes as their ancestors, which reproduced exclusively through male-female mating, a new study in Current Biology shows.

“Our study confirms that when females shift from mating with males to fertilizing their own eggs, the number of genes utilized by that species shrinks,” says study leader Eric Haag, an evolutionary biologist and associate professor of biology at the University of Maryland.

“We also found that the genes activated only in males or females seem to be especially likely to be lost in the self-fertilizing species. Overall, our study forges a fascinating link between how a species reproduces and the size and content of its genome.”

Haag’s team looked at the genomes of two common species of roundworm, Caenorhabditis elegans and the related C. briggsae. About the size of a dust speck, these worms have, over a few millions of years, evolved from animals with females and males into species where the female has become a hermaphrodite that creates her own sperm to fertilize her eggs. In these species, males are very rare, and no mating is needed for reproduction.

Genome Cliff Notes

Haag has done other evolutionary studies on these worms, but his idea to compare the genomes of hermaphrodites and their close relatives came from ongoing genome projects. “The genome sequences have ambiguities that make comparing their sizes tricky, but I noticed they were always bigger in the species that had typical male-female sexes,” Haag says.

Applying cutting edge sequencing technology in collaboration with genomics researchers from the National Institutes of Health, Haag’s team compared the complete sets of active genes (the transcriptomes) in males and hermaphrodites of C. elegans and C. briggsae to males and females of three related species that still reproduce exclusively by mating. This adds information that DNA sequencing alone cannot, such as differences in how each sex uses a gene.

C. elegans and C. briggsae seem to have the Cliffs Notes version of the nematode genome,” says Haag. They have the most critical genes of their ancestors, but have lost thousands of others. These include all sorts of genes, but those turned on only in males or only in females, and thus likely to be related to sex and reproduction, are especially likely to be lost.

“The lost male-active genes are likely used for aspects of sperm production or delivery, while many lost female-active genes encode proteins that regulate other genes. We speculate that many of the lost genes were needed for optimal mating, and may no longer be necessary.”

Lost is lost

While the hermaphrodite life has worked well for C. elegans and C. briggsae so far, their self-sufficient sex lives could set them up for extinction.

“Others have shown that hermaphrodite worms have a tendency to lose DNA in the lab, and our results indicate this is happening in nature, too. Genes related to sex are especially likely to disappear. Once a sex-related gene is lost, it probably stays lost,” Haag says.

“Over time this reduces mating further, and each cycle the genome gets smaller. But if variation becomes important again, and they try to go back to mating, they can’t do it well anymore. Self-fertilizing species go extinct faster than those that keep mating, and this may be why.”

The study also shows that an organism’s genome can change a great deal and not make a difference to its day-to-day survival. “It’s often thought that the genome is like a machine that’s been engineered, and that all the nuts and bolts are important and must stay in place or the organism stops working. This study is one of a number that show many of those nuts and bolts aren’t necessary after all.”

Source: University of Maryland

chat2 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

2 Comments

  1. Baron Pike

    On the other hand, single celled microbia self evolve their genes almost at will. Of course they remain as single celled evolvers as one consequence. But since we’ve all in time evolved from them, different needs would seem to require different consequences.

  2. eire

    I dont want to be a worm lol Great site very interesting topic keep up the good work well worth a visit by anyone highly recommened

We respect your privacy.