planetfall2

Missing planets? Signs point to killer stars

U. WASHINGTON (US)—Astronomers during the past two decades have found hundreds of planets orbiting stars outside our solar system. They might have found more, except some of the planets appear to be missing. New research suggests stars—and their gravitational tug—may be to blame.

The idea that gravitational forces might pull a planet into its parent star has been predicted by computer models only in the last year or so, and this is the first evidence that such planet destruction has already occurred, says University of Washington astronomer Rory Barnes.

“When we look at the observed properties of extrasolar planets, we can see that this has already happened—some extrasolar planets have already fallen into their stars,” he explains.

Computer models can show where planets should line up in a particular star system, but direct observations show that some systems are missing planets close to the stars where models say they should be.

Barnes, a postdoctoral astronomy researcher with the university’s Virtual Planet Laboratory, is coauthor of a paper describing the findings. Lead author Brian Jackson and coauthor Richard Greenberg are with the Lunar and Planetary Laboratory at the University of Arizona.

The research involves planets that are close to their parent stars. Such planets can be detected relatively easily by changes in brightness as their orbits pass in front of the stars. But because they are so close to each other, the planet and star begin pulling on each other with increasingly strong gravitational force, misshaping the star’s surface with rising tides from its gaseous surface.

“Tides distort the shape of a star. The bigger the tidal distortion, the more quickly the tide will pull the planet in,” Jackson says.

Most of the planets discovered outside of our solar system are gas giants like Jupiter except that they are much more massive. However, earlier this year astronomers detected an extrasolar planet called CoRoT-7 B that, while significantly larger than our planet, is more like Earth than any other extrasolar planet found so far.

However, that planet orbits only about 1.5 million miles from its star, much closer than Mercury is to our sun, a distance that puts it in the category of a planet that will fall into its star. Its surface temperature is around 2,500 degrees Fahrenheit “so it’s not a pleasant environment,” Barnes explains, and in a short time cosmically—a billion years or so—CoRoT-7 B will be consumed.

The destruction is slow but inevitable, Jackson says.

“The orbits of these tidally evolving planets change very slowly, over timescales of tens of millions of years,” Jackson adds. “Eventually the planet’s orbit brings it close enough to the star that the star’s gravity begins tearing the planet apart.

“So either the planet will be torn apart before it ever reaches the surface of the star, or in the process of being torn apart its orbit eventually will intersect the star’s atmosphere and the heat from the star will obliterate the planet.”

The researchers hope the work leads to better understanding of how stars destroy planets and how that process might affect a planet’s orbit, Jackson notes. The scientists also say their research will have to be updated as more extrasolar planets are discovered.

NASA, which funded the research, recently launched the Kepler telescope, which is designed specifically to look for extrasolar planets that are closer in size to Earth. Jackson hopes observations will provide new lines of evidence to investigate how a star’s tides can destroy planets.

University of Washington news: http://uwnews.org

chat1 Comment

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

  1. cera livingston

    i find this subject so interesting.. some say that there are stars far away but close enough to destroy earths atmosphere. killer stars i mean.

We respect your privacy.