MD_treated2_1

Microgene treats muscular dystrophy in dogs

U. MISSOURI (US) — A microgene packed into a virus may lead to a new treatment for muscular dystrophy.

Researchers tested the gene therapy in dogs and saw improved muscle function and reduced inflammation. The findings are reported in the journal Molecular Therapy.

Muscular dystrophy occurs when damaged muscle tissue is replaced with fibrous, bony or fatty tissue and loses function. Duchenne muscular dystrophy (DMD) is the most common type of muscular dystrophy predominantly affecting boys.

Patients with DMD have a gene mutation that disrupts the production of dystrophin, a protein essential for muscle cell survival and function. Absence of dystrophin starts a chain reaction that eventually leads to muscle cell degeneration and death.

For years, scientists have been working to find the key to restoring dystrophin, but they have faced many challenges.

One of the largest hurdles in DMD gene therapy is the large size of the gene. Dystrophin is the largest gene in the human genome, containing approximately 4,000 amino acids. To fit the dystrophin gene into a vehicle that could deliver the gene to the appropriate site in the body, one has to delete 70 percent of the gene.

The highly abbreviated gene is known as the “micro-dystrophin” gene. Previous studies suggest that micro-dystrophin can effectively stop muscle disease in mice that are missing dystrophin.

However, mice that are missing dystrophin show minimal DMD symptoms, and results from mice often do not predict what will happen in humans.

In contrast to mice, loss of dystrophin results in severe muscular dystrophy in dogs. If micro-dystrophin can work in dystrophic dogs, it will likely work in human patients. Unfortunately, when micro-dystrophin was tested in dogs in previous studies, it was not successful.

To overcome these hurdles, a team led by Dongsheng Duan, professor in medical research at the University of Missouri School of Medicine, engineered a new micro-dystrophin gene that carries an important functional region missing in previously tested micro-dystrophins.

“We placed the new microgene into a virus and then injected the virus into dystrophic dogs’ muscles,” Duan says.

Following gene therapy, Duan’s team examined the dogs for signs of muscle disease and measured muscle force in treated and untreated dogs. After careful evaluation of 22 dogs, Duan and colleagues found that the new version of micro-dystrophin not only reduced inflammation and fibrosis, it also effectively improved muscle strength.

“This is the first time that we have seen positive gene therapy results in large mammals of DMD,” says Duan. “We still have a lot of work to do, but we now know that our gene therapy strategy works in large mammals; this is a quantum leap forward in fighting this disease.

“Our next step is to test our strategy in a large group of muscles in the dogs, and then, eventually, see if ‘whole body therapy’ will work in the dogs. We are still a long way off before we will have a human treatment, but with this finding, I do see a light at the end of this tunnel.”

Source: University of Missouri

chat1 Comment

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

  1. S V S Verma

    Hearty Congrats Prof Duan and all the team for their sincere efforts towards finding a novel method to be able to contain/cure the dreaded Duchenne Muscular Dystrophy affecting young men globally, and making their own life as also those of their care givers miserable. Yet the big question remains is the time the therapy will take reach the needy and,more so,at an affordable cost.
    I earnestly hope the humane aspect in all those engaged with the development ,and subsequently likely to be involved with the manufacture and trading of the drug/technique will also emerge simultaneously to helping the DMD boys avail of and benefit from the therapy.
    Best wishes for an early success, SVSVerma

We respect your privacy.