Bent Sample_1

Metallic glass that’s strong and tough

CALTECH (US) — Tests show a new alloy material to be what most materials are not: shatter resistant and super strong.

“Strength and toughness are actually very different, almost mutually exclusive,” says Marios Demetriou, a senior research fellow at the California Institute of Technology (Caltech). “Generally, materials that are tough are also weak; those that are strong, are brittle.”

The metallic glass—a combination of the noble metal palladium, a small fraction of silver, and a mixture of other metalloids—has shown itself in tests to have a combination of strength and toughness at a level that has not previously been seen in any other material.

Demetriou says test results, reported in the journal Nature Materials, demonstrate “for the first time that this class of materials, the metallic glasses, has the capacity to become the toughest and strongest ever known.”

What gives metallic glasses their unusual qualities is the fact that they are made of metals—with the inherent toughness that comes with that class of material—but have the internal structure of glass, and thus its strength and hardness. (Despite its name, it is this internal structure that is the only glasslike thing about metallic glass: the material is not transparent, Demetriou notes, and is both optically and electronically like metal.)

Glassy Rods_2

Above, glassy palladium rods with diameters ranging from 3 to 6 mm. Below, transmission electron micrograph shows the amorphous structure of glassy palladium lacking any ordered crystalline arrangement of atoms (the area is 10 nanometers x 10 nanometers). (Credit: Marios Demetriou and Carol Garland, Caltech)

Amorphous Structure_1

The problem with trying to increase strength in ordinary metals is that their atoms are organized in a crystal lattice, Demetriou explains. “And whenever you try to make something as perfect as a crystal, inevitably you will create defects,” he says. Those defects, under stress, become mobile, and other atoms move easily around them, producing permanent deformations. While this rearrangement around defects results in an ability to block or cap off an advancing crack, producing toughness, it also limits the strength of the material.

On the other hand, glass has an amorphous structure, its atoms scattered about without a specific discernible pattern. In metallic glasses—also called amorphous metals because of their structure—this results in an absence of the extended defects found in crystalline metals.

The actual defects in glasses are generally much smaller in size and only become active when exposed to much higher stresses, resulting in higher strengths. However, this also means that the strategy used in ordinary metals to stop a crack from growing ever longer—the easy and rapid rearrangement of the atoms around defects into a sort of cap at the leading edge of a crack—is not available.

“When defects in the amorphous structure become active under stress, they coalesce into slim bands, called shear bands, that rapidly extend and propagate through the material,” says Demetriou. “And when these shear bands evolve into cracks, the material shatters.”

It was this tendency to shatter that was thought to be one of the limiting factors of metallic glasses, which were first developed in the 1960s at Caltech. The assumption was that, despite their many benefits, they could never match or exceed the toughness of the toughest steels.

But what the Caltech scientists found, much to their surprise, was that creating more of a problem could actually solve the problem. In the new palladium alloy, so many shear bands form when the material is put under stress that it “actually leads to higher toughness, because the bands interact and form networks that block crack propagation,” Demetriou explains.

In other words, the number of shear bands that form, intersect, and multiply at the tip of an evolved crack is so high that the crack is blocked and cannot travel very far. In essence, then, the shear bands act as a shield, preventing shattering. Thus, the palladium glass acts very much like the toughest of steels, using an analogous blocking mechanism of arresting cracks.

“And,” Demetriou adds, “this high toughness does not come at the expense of strength. This material has both strength and toughness, which is why it falls so far outside what’s previously been possible. That’s why this material is so special.”

The palladium alloy described in the paper could soon be of use in biomedical implants, says Demetriou. “One example is dental implants,” Demetriou says. “Many noble-metal alloys, including palladium, are currently used in dentistry due to their chemical inertness and resistance to oxidation, tarnish, and corrosion.

“Owing to its superior damage tolerance, the present palladium glass can be thought of as a superior alternative to conventional palladium dental alloys. Plus, the absence of any elements considered toxic or allergenic—nickel, copper, aluminum—from the composition of this alloy will likely promote good biological compatibility.”

Researchers from the Lawrence Berkeley National Laboratory (LBNL) and UC Berkeley collaborated on the work, which is supported by the National Science Foundation and the U.S. Department of Energy.

More news from Caltech: http://today.caltech.edu/

chat1 Comment

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

  1. referencement google

    I’ll right away clutch your rss as I can not find your email subscription hyperlink or e-newsletter service. Do you have any? Kindly let me recognise in order that I may just subscribe. Thanks.

We respect your privacy.