"This study shows that our genomes introduce changes in the immune system early on," says Christophe Benoist. "These changes influence how a person responds to additional risk factors that he or she may encounter over the course of their life, making them more or less susceptible to triggering a disease process such as type 1, or juvenile, diabetes." (Credit: BruceBlaus/Wikimedia Commons)

Immune cells reveal genetic risk factors

Genetic variations among healthy, young individuals not only influence immune cell function, but are also genetic risk factors for common diseases such as Alzheimer’s disease, diabetes, and multiple sclerosis later in life, report researchers.

The findings, published today in Science, offer new insight into disease pathology.

“This study extends the narrative that many of the effects of disease-related genetic variation are specific to a certain context, such as a given immune cell type,” says senior study author Barbara Stranger, assistant professor in the section of genetic medicine and core member of the Institute for Genomics and Systems Biology at the University of Chicago.

“Thus, it is clear that further studies must investigate an increasingly complex matrix of cell types and conditions to fully understand the role of human genetic variation in disease.”

Immune cell genes

The study was part of the ImmVar Project, which used Brigham and Women’s Hospital’s PhenoGenetic Project, a “living biobank” of healthy volunteers willing to contribute blood samples to understand how human genetic variations affect how the human body functions.

The researchers recruited a subset of 461 volunteers from the PhenoGenetic Project of African American, East Asian American, or European American ancestry. Two different types of immune cells—T cells and monocytes—were purified from each individual’s blood, representing the adaptive and innate arms of immunity, respectively.

The researchers profiled these cells to measure the expression of 19,114 genes in each cell type. They then examined genetic variants throughout the human genome for their effects on gene expression in these two representative populations of immune cells.

Functional effects of genetic variation

They discovered that genetic variation influencing a person’s risk for multiple sclerosis, rheumatoid arthritis, and type 1 diabetes is more likely to control gene activity in T cells than in monocytes.

In contrast, genetic variation that increases one’s risk for neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, shows a striking enrichment of functional effects in monocytes.

“Over the last decade, geneticists have identified hundreds of genetic risk factors for several human diseases, but the functional consequences of those factors on relevant cells are largely unknown,” says lead author Towfique Raj, of Brigham and Women’s Hospital’s department of neurology and a postdoctoral scholar at the Broad Institute of MIT.

“Our study highlights the potential role of immune system cells in human diseases.”

“This study shows that our genomes introduce changes in the immune system early on,” says Christophe Benoist of Harvard Medical School and the Broad Institute.

“These changes influence how a person responds to additional risk factors that he or she may encounter over the course of their life, making them more or less susceptible to triggering a disease process such as type 1, or juvenile, diabetes.”

Alzheimer’s disease clues

“The study focuses our attention on a particular part of the immune system that already exhibits changes caused by Alzheimer risk factors in people in their 20s and 30s,” says Philip L. De Jager, director of the Brigham and Women’s Hospital Program in Translational NeuroPsychiatric Genomics, associate member at the Broad Institute, and senior author of the study.

“Functionally, we cannot say that blood-derived immune cells are the key cell type for Alzheimer’s disease. They are likely to be proxies for the infiltrating and resident cells found at the sites of neuropathology.

“However, these exciting insights encourage us to explore how manipulating these immune cell types may one day slow or contribute to stopping the accumulation of Alzheimer’s disease pathology that occurs as each of us ages.”

By including volunteers of different genetic ancestries, the researchers also found that genetic variation that alters immune function is highly shared across human populations of different ancestry.

“Our multi-ethnic exploration of innate and adaptive immunity highlights a remarkable level of sharing across human populations of genetic variation influencing immune function, while identifying interesting instances of genetic effects on immune function that are specific to a population,” says Nir Hacohen, of Massachusetts General Hospital and the Broad Institute.

The United States National Institutes of General Medical Sciences and the National Institutes of Health supported the study.

Source: University of Chicago

chat0 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

0 Comments

We respect your privacy.