cell_cluster_1

How to create an ‘endless supply’ of cells

U. ROCHESTER (US) — A new discovery overcomes a significant technical hurdle to potential human stem cell therapy by ensuring an abundant supply of cells to study and ultimately treat disease.

As reported in the Journal of Neuroscience, researchers have unlocked the complex cellular mechanics that instruct specific brain cells to continue to divide.

“One of the major factors that will determine the viability of stem cell therapies is access to a safe and reliable supply of cells,” says Steve Goldman, University of Rochester Medical Center neurologist and lead author of the study. “This study demonstrates that—in the case of certain populations of brain cells—we now understand the cell biology and the mechanisms necessary to control cell division and generate an almost endless supply of cells.”

The study focuses on cells called glial progenitor cells (GPCs) that are found in the white matter of the human brain. These stem cells give rise to two cells found in the central nervous system: oligodendrocytes, which produce myelin, the fatty tissue that insulates the connections between cells; and astrocytes, cells that are critical to the health and signaling function of oligodendrocytes as well as neurons.

Damage to myelin lies at the root of a long list of diseases, such as multiple sclerosis, cerebral palsy, and a family of deadly childhood diseases called pediatric leukodystrophies.

The scientific community believes that regenerative medicine—in the form of cell transplantation—holds great promise for treating myelin disorders. Goldman and his colleagues, for example, have demonstrated in numerous animal model studies that transplanted GPCs can proliferate in the brain and repair damaged myelin.

However, one of the barriers to moving forward with human treatments for myelin disease has been the difficulty of creating a plentiful supply of necessary cells, in this case GPCs. Scientists have been successful at getting these cells to divide and multiply in the lab, but only for limited periods of time, resulting in the generation of limited numbers of usable cells.

“After a period of time, the cells stop dividing or, more typically, begin to specialize and form astrocytes which are not useful for myelin repair,” says Goldman. “These cells could go either way but they essentially choose the wrong direction.”

Overcoming this problem required that Goldman’s lab master the precise chemical symphony that occurs within stem cells, and which instructs them when to divide and multiply, and when to stop this process and become oligodendrocytes and astrocytes.

One of the key players in cell division is a protein called beta-catenin. Beta-catenin is regulated by another protein in the cell called glycogen synthase kinase 3 beta (GSK3B). GSK3B is responsible for altering beta-catenin by adding an additional phosphate molecule to its structure, essentially giving it a barcode that the cell then uses to sort the protein and send it off to be destroyed.

During development, when cell division is necessary, this process is interrupted by another signal that blocks GSK3B. When this occurs, the beta-catenin protein is spared destruction and eventually makes its way to the cell’s nucleus where it starts a chemical chain reaction that ultimately instructs the cell to divide.

However, after a period of time this process slows and, instead of replicating, the cells begin to then commit to becoming one type or another. The challenge for scientists was to find another way to essentially trick these cells into continuing to divide, and to do so without risking the uncontrolled growth that could otherwise result in tumor formation.

The new discovery hinges on a receptor called protein tyrosine phosphatase beta/zeta (PTPRZ1). Goldman and his team long suspected that PTPRZ1 played an important role in cell division; the receptor shows up prominently in molecular profiles of GPCs. After a six-year effort to discern the receptor’s function, they found that it works in concert with GSK3B and helps “label” beta-catenin protein for either destruction or nuclear activity.

The breakthrough was the identification of a molecule—called pleiotrophin—that essentially blocks the function of the PTPRZ1 receptor. They found that by regulating the levels of pleiotrophin, they were able to essentially “short circuit” PTPRZ1’s normal influence on cell division, allowing the cells to continue dividing.

While the experiments were performed on cells derived from human brain tissue, the authors contend that the same process could also be applied to GPCs derived from embryos or from “reprogrammed” skin cells. This would greatly expand the number of cells potentially derived from single patient samples, whether for transplantation back to those same individuals or for use in other patients.

Additional authors on the paper include first author, URMC graduate student Crystal McClain, and Fraser Sim, a member of Goldman’s lab and now an assistant professor at the University at Buffalo.

The study was supported by the National Institute of Neurological Disorders and Stroke, the Department of Defense, the Adelson Medical Research Foundation, and the National Multiple Sclerosis Society.

Source: University of Rochester

chat2 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

2 Comments

  1. laurel johnson

    I read your articles daily and find the selection interesting. I find that sometimes you are misleading in your terminology and do not know if this is from lack of expertise or a desire to make findings appear more astounding and get more readers. For example, in this article they have found a way to turn on/off genes in GPCs but your introduction to the article makes it sound like this will work for all stem cells. In other articles the use of stem cell type is also reserved for farther into the text. and

    This can make it look like embryonic research is at the root of all these successes, which is far from true.

  2. Www.C2Byakoa.Com

    I’m really enjoying the design and layout of your
    blog. It’sa very easy on thhe eyes which makes it much
    more pleasant for me to come here annd viusit more often.
    Did you hire outt a designer to create your theme? Superb work!

    minor league uniforms

We respect your privacy.