Leg ‘springs’ are stiffer in jumpers who can wait

Schistocerca gregaria. (Credit: Getty Images)

Biomechanical simulations help to explain why grasshoppers and bullfrogs have very different stiffnesses in the springs—tendons in the frogs and tendon counterparts called apodemes in the grasshoppers—that store energy for their leaps.

When an animal has less time to store energy for a jump, it needs a less stiff tendon than does one that can take its time, the research shows.

“Our simulation is in line with the hypothesis that spring stiffness varies among organisms according to their jumps—whether they are time-limited or non-time-limited,” says Michael Rosario, a postdoctoral fellow at Brown University and lead author of the study in the Proceedings of the Royal Society B.

American bullfrog in water
Lithobates catesbeiana. (Credit: Getty Images)

Scientists already knew that the key spring in the grasshopper (the apodeme and part of its exoskeleton) has more than twice the stiffness as the analogous tendon in the bullfrog. By simulating the muscle-spring systems in each creature’s legs, Rosario and his coauthors showed that the more time an animal has to contract muscle to store up energy before jumping, the more energy they can store in a relatively stiff spring.

Watch the bug ‘ballet’ of jumping spider crickets

Grasshoppers (Schistocerca gregaria) will normally spend 300 milliseconds storing up energy in their muscles, apodemes, and exoskeletons, although they have to jump more quickly, and perhaps less efficiently, to evade predators. Bullfrogs (Lithobates catesbeiana), on the other hand, normally spend only 50 milliseconds before making a leap, for instance to pounce toward prey.

The simulations showed the greatest energy storage for a quick jump like that of the bullfrog was in a less stiff spring, while for the grasshopper’s timeframe it was in a stiffer spring. In other words, the creatures have the spring stiffness they should, given the time constraints on their typical jumping behavior.

“For both the bullfrog and the grasshopper, the time available for muscle contraction determined which spring stiffness permitted maximal energy storage,” write Rosario and colleagues.

Why frogs around the world look oddly alike

Rosario and his colleagues argue that the paper may help predict muscle and tendon properties for other organisms, including mammals. Further research, which Rosario is conducting in the lab of Brown University Professor Thomas Roberts, will determine whether that’s too much of a leap.

Coauthors contributed from Duke University (where he did most of the research before completing it at Brown), the University of Bristol, North Carolina State University, and the University of North Carolina.

The Department of Energy and the National Science Foundation supported the research.

Source: Brown University