Low glucose ‘delivery’ may intensify Alzheimer’s

"We do not know yet whether medicine can restore GLUT1 expression, but we believe that targeting the protein may help prevent Alzheimer's from getting worse among individuals predisposed to develop the disease," says Berislav Zlokovic. (Credit: iStockphoto)

A deficiency in the protein that moves glucose across the brain’s protective blood-brain barrier appears to intensify the neurodegenerative effects of Alzheimer’s disease.

The study, done with mice, suggests that targeting the protein called GLUT1 could help prevent or slow the effects of Alzheimer’s, especially among those at risk for the disease. The study appears online in Nature Neuroscience.

“Our results suggest that GLUT1 deficiencies at the blood-brain barrier are not just symptoms of Alzheimer’s but, in fact, lead to a series of vascular injuries that worsen the effects of the disease,” says Berislav Zlokovic, director of the Zilkha Neurogenetic Institute at USC’s Keck School of Medicine, chair for Alzheimer’s disease research, and the study’s principal investigator.

“We do not know yet whether medicine can restore GLUT1 expression, but we believe that targeting the protein may help prevent Alzheimer’s from getting worse among individuals predisposed to develop the disease.”

Brain fuel

According to the Alzheimer’s Association, roughly 5.2 million people of all ages in the United States have Alzheimer’s, a progressive brain disease that causes problems with memory, thinking, and behavior.

It is the most common type of dementia, a general term for loss of memory and other mental abilities, and is projected to affect 16 million Americans over age 65 by 2050.

Glucose is the brain’s main energy source, and GLUT1 helps move it across the blood-brain barrier—a cellular layer that prevents entry of blood and pathogens into the brain.

Previous research has shown diminished glucose uptake in the brain among individuals at genetic risk for Alzheimer’s, with a positive family history, and/or who develop the disease but show mild or no cognitive impairment.

Barrier breakdown

In the new study, Zlokovic’s team used transgenic mice to show that GLUT1 is necessary to maintain proper brain capillary networks, blood flow, and blood-brain barrier integrity.

[related]

The team found that GLUT1 deficiency led to diminished glucose uptake into the brain as early as two weeks of age and, by six months of age, neuronal dysfunction, behavioral deficits, elevated levels of amyloid-beta peptide, behavioral changes, and neurodegenerative changes.

The team also found that GLUT1 deficiency in the endothelium—the inner lining of blood vessels—initiated breakdown of the blood-brain barrier.

Alzheimer’s pathogenesis is widely believed to be driven by amyloid-beta peptide buildup in the brain, facilitated by breakdown of the blood-brain barrier.

Areas of future research may include identification of the metabolic pathways through which GLUT1 deficiencies in the blood-brain barrier influence brain metabolism as well as an examination of whether early embryonic GLUT1 loss affects the central nervous system differently than a deficiency incurred later during development.

The National Institutes of Health supported the work.

Source: USC