"Nature can be complex, but an urban environment is a whole other layer on top of that," says Jeffrey Riffell. "These moths are not important pollinators in urban environments, but these same volatiles from vehicles may affect pollinators like honeybees or bumblebees, which are more prevalent in many urban areas." Above, Manduca sexta feeding from Datura wrightii flower. (Credit: Kiley Riffell/Flickr)

flowers ,

Exhaust keeps moths from finding flowers

Exhaust fumes from cars and trucks, along with natural plant odors, can make it hard for pollinating moths to find flowers, researchers say.

Because the calories from feeding off a flower fuel only 15 minutes of flight, as is the case with the tobacco hornworm moth, being misled costs a pollinator energy and time.

[related]

“Local vegetation can mask the scent of flowers because the background scents activate the same moth olfactory channels as floral scents,” says Jeffrey Riffell, assistant professor of biology at University of Washington.

“Plus the chemicals in these scents are similar to those emitted from exhaust engines and we found that pollutant concentrations equivalent to urban environments can decrease the ability of pollinators to find flowers.”

For a new study, published in Science, researchers used a chemical detection device called a proton-transfer reaction mass spectrometer (PTR-MS) to track the odors emitted by flowers in the wild just as moths might encounter them.

With wingspans of 4 inches, adult Manduca sexta moths can travel up to 80 miles in an evening looking for food and mates.

“This is the first significant example of powerful mass spectrometry used to provide information to explain an olfactory environment,” says Leif Abrell, a associate research scientist in the soil, water, and environmental sciences department at University of Arizona, who studied floral odor plumes in a creosote bush habitat in the Santa Rita Experimental Range southeast of Tucson, Arizona.

Noses like dogs

Kolby Jardine, a postdoctoral fellow at University of Arizona at the time of the study and now a scientist in the Climate Sciences Department of the Lawrence Berkeley National Laboratory, assisted Abrell in using PTR-MS, which helped identify the chemical components of the environment.

“As an organic chemist interested in natural products and chemical communication, I am very excited to see PTR-MS applied to the discipline of olfactory ecology and chemical communication in the gas phase,” Abrell says.

“Nature can be complex, but an urban environment is a whole other layer on top of that,” Riffell says. “These moths are not important pollinators in urban environments, but these same volatiles from vehicles may affect pollinators like honeybees or bumblebees, which are more prevalent in many urban areas.”

The moths are about equivalent to dogs in their ability to detect scents and both are several thousand times more skillful than humans.

‘Swamped out’ scents

In the Southwest, where the fieldwork took place, the moth navigates to and pollinates the white trumpetlike blossoms of Sacred Datura, or Datura wrightii.

The moths can detect and home in on flowers hundreds of yards away if there aren’t too many competing scents. In the Southwest, moths in search of Sacred Datura can be hindered because the flowers often grow in dense stands of creosote bush.

Despite having “creosote” as part of its name—creosote being a component of tar—the plant actually smells like almonds and cherry soda and emits some of the same aromatic volatiles as Sacred Datura.

Even while sampling in the desert environment the scientists found the odors the moths were seeking could be “swamped out” by the natural vegetation, Riffell says.

Misleading smells

Back in the lab, using a wind tunnel and computer-controlled odor stimulus system, the moths in free flight were tested to see just how finely they could discern different frequencies of Sacred Datura odor as well as mixes of background odors from creosote bushes.

The neuron pathways activated in the moths were tracked by inserting a 16-channel electrode into the moth’s antennal lobe, where the moth processes odor information from its antennae.

To analyze the neural recordings the researchers developed an odor-recognition data classifier and computational model that allowed them to compare the recognition scores between the natural flower scents and those embedded with various backgrounds.

The computational analysis showed results that were remarkably similar to those in the wind tunnel: Backgrounds scents significantly modified the representation of the flower odor, and altered the neural perception of the flower.

The scientists were surprised that scents that were only loosely similar to ones attractive to moths, such as those from auto and truck exhaust, also misled them.

“We’d assumed that the moth’s ability to smell the flowers would be more specific. Instead, other volatiles also activated those same olfactory pathways,” Riffell says.

“Beyond our work with moths, we’d also like to see if these volatiles affect other pollinators, like honeybees. Such work could provide insight into whether urban emissions affect pollinators in farms neighboring urban centers.”

The University of Washington funded the work.

Source: University of Arizona

Related Articles