chief cells

Even without injury, stomach makes stem cells

Our stomachs naturally produce more stem cells than scientists had realized, and likely do so to repair injuries from infections, digestive fluids, and food.

Stem cells can make multiple kinds of specialized cells, and scientists have been working for years to use that ability to repair injuries throughout the body. But causing specialized adult cells to revert to stem cells and work on repairs has been challenging.

stomach cells
One or more chief cells, which normally make digestive juices in the stomach, have changed into a stem cell in the images above, filling its gland (outlined by dashed lines) with green-tinted descendants. (Credit: Greg Sibbel, Jason Mills)

“We already knew that these cells, which are called chief cells, can change back into stem cells to make temporary repairs in significant stomach injuries, such as a cut or damage from infection,” says Jason Mills, associate professor of medicine at Washington University in St. Louis.

“The fact that they’re making this transition more often, even in the absence of noticeable injuries, suggests that it may be easier than we realized to make some types of mature, specialized adult cells revert to stem cells.”

The findings are published in Cell.

‘Remarkable change’

Chief cells normally produce digestive fluids for the stomach. Mills studies their transformation into stem cells for injury repair. He also is investigating the possibility that the potential for growth unleashed by this change may contribute to stomach cancers.

In the new report, Mills, graduate student Greg Sibbel, and Hans Clevers, a geneticist at Utrecht Medical Center, identify markers that show a small number of chief cells become stem cells even in the absence of serious injury.

If a significant injury is introduced in cell cultures or in animal models, more chief cells become stem cells, making it possible to fix the damage.

“Chief cells normally are big factories with elaborate networks of tubing and secretory mechanisms for making and secreting digestive juices,” says Mills, associate director of Washington University’s Digestive Diseases Center. “That all has to be dismantled and recycled so the chief cell can become a stem cell. It’s a remarkable change.”

Mills’ other goals include learning if the chief cells’ transformations are triggered by signals sent by injured tissue, by damage sensors on the chief cells, or by some combination of these methods.

Funding from the Centre for Biomedical Genetics, the European Research Council, the National Research Foundation of Korea, the Wellcome Trust, EU Marie Curie Fellowships, and TI Pharma supported the research.

Source: Washington University in St. Louis