Bacteria1_1

Compound defeats drug-resistant bacteria

BROWN (US) — When drugs are developed to combat infection, bacteria fight back by coming up with a deterrent. A newly developed compound makes the bacteria vulnerable again.


A particularly ingenious weapon in bacteria’s arsenal is the drug efflux pump—proteins located in the membranes of bacteria that can recognize and expel drugs that have breached the membranes. In some cases, the bacterial pumps have become so advanced they can recognize and expel drugs with completely different structures and mechanisms.

“This turns out to be a real problem in clinical settings, especially when a bacterial pathogen acquires a gene encoding an efflux pump that acts on multiple antibiotics,” says Jason Sello, assistant professor of chemistry at Brown University.

“In the worst case scenario, a bacterium can go from being drug-susceptible to resistant to five or six different drugs by acquiring a single gene.”

That left scientists with two choices: Make new and costly antibiotics or find a way around the pump. Sello and colleagues chose the latter.

In a paper published in the journal Bioorganic and Medicinal Chemistry, the team reports it has discovered a new compound of C-capped dipeptides, called BU-005, to circumvent a family of drug-efflux pumps associated with Gram-positive bacteria, which include MRSA and tuberculosis strains. Until that discovery, C-capped dipeptides were known to work only against an efflux pump family associated with Gram-negative bacteria.

“If drug efflux pumps are inhibited, then bacteria will be susceptible to drugs again,” Sello says. “This approach is of interest because one would have to discover efflux pump inhibitors rather than entirely new kinds of antibacterial drugs.”

The company MPEX Pharmaceuticals recently discovered that specific C-capped dipeptides could block the efflux pumps of the RND family, which are responsible for much of the drug resistance in Gram-negative bacteria.

One of these compounds developed at MPEX advanced to phase I of an FDA clinical trial. Sello and his co-authors investigated whether C-capped dipeptides could block the pumps of another drug efflux family, called the major facilitator superfamily (MFS), which is associated mostly with Gram-positive bacteria.

Researchers thought that new and perhaps more potent C-capped dipeptide efflux pump blockers could be discovered. Since it is not possible to predict which C-capped dipeptides would be efflux pump blockers, they synthesized a collection of structurally diverse C-capped dipeptides and screened it for compounds with new or enhanced activities.

Using an approach called the Ugi reaction, Sello was able to prepare dozens of different C-capped dipeptides and assessed each compound’s ability to block two efflux pumps in the bacterium Streptomyces coelicolor, a relative of the human pathogen Mycobacterium tuberculosis which resists chloramphenicol, one of the oldest antibacterial drugs.

From a collection of nearly 100 C-capped dipeptides that they prepared and tested, the group discovered BU-005. The new compound was successful in preventing the MFS efflux pump family from expelling chloramphenicol. Until now, structurally related C-capped dipeptides had only been reported to prevent chloramphenicol expulsion by other drug efflux pump families.

“Our findings that C-capped dipeptides inhibit efflux pumps in both Gram-positive and Gram-negative bacteria should reinvigorate interest in these compounds,” Sello says. “Moreover, our simplified synthetic route should make the medicinal chemistry on this class of compounds much simpler.”

Babajide Okandeji, who earned his doctorate last May and is a new products quality control chemist at Waters Corp. in Taunton, Mass., is the paper’s first author.

More news from Brown University: http://news.brown.edu

chat2 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

2 Comments

  1. Laurie Clifford

    Keep this outstanding research going!! Bravo. Your discoveries will impact so very very many people fighting and fighting uphill battles against bacteria all over the world. I will look forward to reading about clinical trials underway! And thank you scientists ,researchers,and lab workers all over.

  2. buy local seo services

    I love your website. Everything is very information. Keep up the great work.

We respect your privacy.