"We clearly know that our bodies and our whole physiology change with age," Jane Grande-Allen says. "Biologically, characteristics like blood-clotting change with age too. The remarkable finding here is that aspects of changes in blood clotting are very strongly linked to the propensity to form calcified heart valves." (Credit: iStockphoto)

Invader proteins may calcify heart valves as we age

Clotting proteins may be to blame for the growth of calcium nodules in aging heart valves, which can make them less flexible and efficient, researchers say.

The Rice University lab of bioengineer Jane Grande-Allen found through studies of pigs’ heart valves that age plays a critical role in the valves’ progressive hardening. The problem may be due to the infiltration of a protein known as von Willebrand factor (VWF). Tissues from pig valves are commonly used to make human heart-valve replacements.

VWF helps regulate blood clotting in both pigs and humans but, as the research team discovered, it finds its way over time into the collagen-rich interior of the valve tissues. Because clotting is not an issue in collagen, there is no apparent need for VWF to be present. The researchers went looking for a connection to the calcium nodules that form in the tissues and make the valves’ leaflets less flexible, which decreases blood flow to the heart.

The new work, detailed in the American Heart Association journal Arteriosclerosis, Thrombosis and Vascular Biology, “opens up a huge line of investigation,” Grande-Allen says.

At top left is a sample of an elderly pig valve; at right, staining reveals the accumulation of VWF protein throughout the tissue. At bottom are porcine aortic valve interstitial cells not treated with endothelial cell VWF (left) and treated with endothelial cell VWF (right). The VWF appears to prompt formation of larger calcific nodules. (Credit: Integrative Matrix Mechanics Lab/Rice University)
At top left is a sample of an elderly pig valve; at right, staining reveals the accumulation of VWF protein throughout the tissue. At bottom are porcine aortic valve interstitial cells not treated with endothelial cell VWF (left) and treated with endothelial cell VWF (right). The VWF appears to prompt formation of larger calcific nodules. (Credit: Integrative Matrix Mechanics Lab/Rice University)

Penetrating proteins

Liezl Balaoing, a graduate student and the paper’s lead author, and research scientist Joel Moake studied valves from pigs of three ages: 6 weeks, 6 months, and 2 years (as stand-ins for young, middle-aged, and old human hearts). Through staining, Balaoing traced the migration of a number of clotting-related proteins common to pigs and humans from the surface endothelial cells to the inner interstitial cells.

The tests showed that as a valve ages, VWF and other proteins gather in the valve tissue’s interior. They then tested how valve interstitial cells that produce calcium nodules in diseased valves respond to VWF. When interstitial cells were intentionally exposed to VWF, “there was a dramatic increase in the size of the nodules at every age,” Balaoing says.

“Endothelial cells on the outside of the valve are making most of these (clotting-related) proteins,” Grande-Allen says. “We found they don’t just float away into the blood or stay on the valve surface. Some of them penetrate down into the tissue.”

Physiological change with age

What remains to be seen is why. Heart valves are in motion from birth to death and are perhaps the most active connective tissue in the body. The researchers suspect the breakdown of collagen over time, as well as the constant stretching of the valve, opens gaps through which the proteins can travel.

“As you get older, collagen becomes less organized,” Balaoing says. “Because the distinct arrangement of extracellular matrix disappears, I think proteins like VWF permeate inside the valve more than what you would see in young, healthy adults.”

“We clearly know that our bodies and our whole physiology change with age,” Grande-Allen says. “Biologically, characteristics like blood-clotting change with age too. The remarkable finding here is that aspects of changes in blood clotting are very strongly linked to the propensity to form calcified heart valves.”

Grande-Allen says she saw signs of VWF invasion into the valves’ interiors in earlier work, but it took a systematic effort by Balaoing to get to the truth. Now they hope to find the binding mechanism that keeps the proteins in place, as that discovery could lead to treatment. “We want to know if VWF and other clotting-related proteins are doing things to the valve interstitial cells and extracellular matrix that may contribute to calcification and other valve diseases,” Grande-Allen says.

The American Heart Association, the National Institutes of Health, the Mary R. Gibson Foundation and the Mabel and Everett Hinkson Memorial Fund supported the research.

Source: Rice University

chat0 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

0 Comments

We respect your privacy.