Graduate student Shelly Hsiao-Ying Cheng shows the tool she created with Rice biochemist Jeff Silberg to conduct two experiments in the same dish, one where biochar had a chance to interfere with a microbial conversation and another where it didn't. (Credit: Jeff Fitlow/Rice University)

Biochar in soil interrupts microbe chit-chat

Biochar can interfere with chemical signals that some microbes use to communicate, including those used by plant pathogens to coordinate an attack.

Biochar is charcoal that is produced—typically from waste wood, manure, or leaves—for use as a soil additive. Previous studies have found it can improve both the nutrient- and water-holding properties of soil, but its popularity in recent years also owes to its ability to reduce greenhouse gases by storing carbon in soil—in some cases for many centuries.

The new study, published online this month in the journal Environmental Science and Technology, is the first to examine how biochar affects the chemical signaling that’s routinely used by soil microorganisms that interact with plants.

“A potted plant may look tranquil, but there are actually a lot of conversations going on in that pot,” says study co-author Joff Silberg, associate professor of biochemistry and cell biology and of bioengineering at Rice University. “In fact, there are so many different conversations going on in soil that it was impractical for us to determine exactly how biochar was affecting just one of them.”

So Silberg and colleagues used the tools of synthetic biology—and a refined experimental setup that Silberg initially drafted with his son’s spare Lego bricks—to establish a situation where just one microbial conversation was taking place and where biochar’s effects on that conversation could be measured.

The cell-signaling study grew out of a previous investigation in which researchers studied the combined effects of adding biochar and nutrients to soils. In all but one case, the biochar and nutrients seemed to enhance one another. In the lone exception, a soil fungus that was typically beneficial to plants began growing so rapidly that it impeded plant growth.

“All of these organisms, to a much greater extent than we probably understand, are talking to each other all the time,” Silberg said. “Microbes talk to microbes. Microbes talk to plants. Plants talk to microbes.

“And they each make decisions about their behavior based on those conversations. When we started talking about these results, my first thought was, ‘You’re probably interfering with a conversation.’”

Speakers and listeners

There was no practical way to isolate the conversation that was likely being interfered with in the previous experiment, but Silberg thought of a way to create engineered microbes to test the idea of whether biochar could interfere with such a conversation.

His lab began by working with Matt Bennett, assistant professor of biochemistry and cell biology, to make use of two tailored forms of E. coli bacteria. One strain “spoke” with a type of chemical communication commonly used by soil microbes, and the other “listened.”

Unlike the fungi that use this communication method in soil, the E. coli could be grown in clear agar gels in a petri dish, which meant the researchers could more easily observe them under a microscope. The team next inserted florescence genes into each organism, which caused them to glow different colors—red for speaking and green for listening.

“We needed a way to conduct two experiments in the same dish, one where biochar had a chance to interfere with a conversation and another where it didn’t,” Silberg says.

Lego lesson

Working with his son’s Legos, Silberg constructed a pair of rectangular platforms that sat parallel in the dish, about one inch apart. Agar was added to fill all parts of the dish except for the areas blocked by the bricks. Once the agar gel had set, the rectangular platforms were removed to create two empty parallel troughs. One of these was filled with clear agar, and the other was filled with agar containing biochar.

“Speaker” organisms were added to the middle of the dish, and “listeners” were placed on the opposite side of each trough.

Graduate student Shelly Hsiao-Ying Cheng refined Silberg’s Lego design and used tools at Rice’s Oshman Engineering Design Kitchen to create a set of sturdy platforms for repeated tests. The group then ran dozens of microscopy tests to see how different formulations and amounts of biochar affected cell signaling.

“In every case, we observed significantly less green light from the opposite side of the biochar, which meant the E. coli on that side had trouble hearing the sender,” Silberg says.

“That upheld our hypothesis, which was that biochar could interfere with cell signaling, most likely by binding with the fatty-acid molecules that the speakers were using to broadcast their message.”

Better results with heat

The team found that biochar that was created with higher temperatures was as much as 10 times more effective at shutting down conversations. This finding is significant because it jibed with the results from a 2012 study by Carrie Masiello, associate professor of Earth science, that found that biochars created with higher-temperature processes were more effective at holding water and nutrients.

“Biochar can be made in processes that range from 250 to 1,000 degrees Celsius, and there’s mounting evidence that the temperature can dramatically affect the final properties,” Masiello says. “Ultimately, we’d like to create a simple guide that people can use to tailor the properties of their biochar.”

“Some microbes help plants and others are harmful. That means there’s good communication and bad communication going on in the soil at the same time,” Silberg says.

“We think it’s likely that some biochars will knock out some conversations and not others, so we want to test that idea and, if possible, come up with a way to tailor biochar for the microbial diversity that’s desired.”

Source: Rice University

chat0 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

0 Comments

We respect your privacy.