researcher_petridish_525

500-million-year-old gene gets 2nd chance

GEORGIA TECH (US) — A 500-million-year-old gene from bacteria has been resurrected, inserted into modern-day E. coli bacteria, and grown for more than 1,000 generations.

The process, called paleo-experimental evolution, “is as close as we can get to rewinding and replaying the molecular tape of life,” says scientist Betül Kaçar, a NASA astrobiology postdoctoral fellow in NASA Center for Ribosomal Origins and Evolution at Georgia Institute of Technology (Georgia Tech).

“The ability to observe an ancient gene in a modern organism as it evolves within a modern cell allows us to see whether the evolutionary trajectory once taken will repeat itself or whether a life will adapt following a different path.”

In 2008, Eric Gaucher , associate professor of biology and Kaçar’s postdoctoral advisor, successfully determined the ancient genetic sequence of Elongation Factor-Tu (EF-Tu), an essential protein in E. coli. EFs are one of the most abundant proteins in bacteria, found in all known cellular life and required for bacteria to survive. That vital role made it a perfect protein for the scientists to answer questions about evolution.

After achieving the difficult task of placing the ancient gene in the correct chromosomal order and position in place of the modern gene within E. coli, Kaçar produced eight identical bacterial strains and allowed “ancient life” to re-evolve. This chimeric bacteria composed of both modern and ancient genes survived, but grew about two times slower than its counterpart composed of only modern genes.

“The altered organism wasn’t as healthy or fit as its modern-day version, at least initially,” says Gaucher, “and this created a perfect scenario that would allow the altered organism to adapt and become more fit as it accumulated mutations with each passing day.”

The growth rate eventually increased and, after the first 500 generations, the scientists sequenced the genomes of all eight lineages to determine how the bacteria adapted. Not only did the fitness levels increase to nearly modern-day levels, but also some of the altered lineages actually became healthier than their modern counterpart.

When the researchers looked closer, they noticed that every EF-Tu gene did not accumulate mutations. Instead, the modern proteins that interact with the ancient EF-Tu inside of the bacteria had mutated and these mutations were responsible for the rapid adaptation that increased the bacteria’s fitness.

In short, the ancient gene has not yet mutated to become more similar to its modern form, but rather, the bacteria found a new evolutionary trajectory to adapt.

These results were presented at the recent NASA International Astrobiology Science Conference. The scientists will continue to study new generations, waiting to see if the protein will follow its historical path or whether it will adopt via a novel path altogether.

“We think that this process will allow us to address several longstanding questions in evolutionary and molecular biology,” says Kaçar. “Among them, we want to know if an organism’s history limits its future and if evolution always leads to a single, defined point or whether evolution has multiple solutions to a given problem.”

More news from Georgia Tech: www.gatech.edu/newsroom/

chat4 Comments

You are free to share this article under the Creative Commons Attribution-NoDerivs 3.0 Unported license.

4 Comments

  1. Rob

    And yet some people think there’s no proof for evolution.

  2. emc2

    what lucky reporter got to go to that conference? (astrobiology). Did anyone cover it?

  3. Luiz Roberto Meier

    Super.

  4. gary bass

    hardly proof, more verification of random influences..
    maths theory already describes the process, the difficult part to know for sure is what cuases the dominant influence…

    not possible know, or predict.
    More to the point is the danger of creating an E coli which cannot be dealt with as it is ‘new’..once released.

We respect your privacy.